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a b s t r a c t

The performance of multivariate kernel density estimation (KDE) depends strongly on
the choice of bandwidth matrix. The high computational cost required for its estimation
provides a big motivation to develop fast and accurate methods. One of such methods
is based on the Fast Fourier Transform. However, the currently available implementation
works very well only for the univariate KDE and its multivariate extension suffers from a
very serious limitation as it can accurately operate only with diagonal bandwidthmatrices.
A more general solution is presented where the above mentioned limitation is relaxed.
Moreover, the presented solution can be easily adopted also for the task of efficient
computation of integrated density derivative functionals involving an arbitrary derivative
order. Consequently, bandwidth selection for kernel density derivative estimation is also
supported. The practical usability of the new solution is demonstrated by comprehensive
numerical simulations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Kernel density estimation (KDE) is a very important statistical technique with many practical applications. It has been
applied successfully to both univariate and multivariate problems. There exists extensive literature on this issue, including
several classical monographs, see Silverman (1986), Scott (1992) and Wand and Jones (1995).

A general form of the d-dimensional multivariate kernel density estimator is

f̂ (x,H) =
1
n

n
i=1

KH (x − X i) , (1)

where

KH (u) = |H |
−1/2K


H−1/2u


, (2)

and H is the d × d bandwidth or smoothing matrix, d is the problem dimensionality, x = (x1, x2, . . . , xd)T , and X i =

(Xi1, Xi2, . . . , Xid)
T , i = 1, 2, . . . , n is a sequence of independent identically distributed (i.i.d.) d-variate random variables

✩ The up-to-date R source codes are included as a supplementary material. The figures and all the data shown in the tables can be replicated (see
Appendix A).
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drawn from a (usually unknown) density function f . Here K and KH are the unscaled and scaled kernels, respectively. In
most cases the kernel has the form of a standard multivariate normal density.

The univariate kernel density estimator for a random sample X1, X2, . . . , Xn drawn from a common and usually unknown
density function f is given by

f̂ (x, h) =
1
n

n
i=1

Kh (x − Xi) , (3)

where

Kh(u) = h−1K

h−1u


, (4)

and h is the bandwidth which is a positive integer. The scaled (Kh) and unscaled (K ) kernels are related in Eq. (4). Note that
the notation used in Eq. (1) is not a direct extension of the univariate notation in Eq. (3), since in the one-dimensional case
the bandwidth is H = h2, so we are dealing with ‘squared bandwidths’ here.

It seems that both uni- and multivariate KDE techniques have reached maturity and recent developments in this field
are primarily focused on computational problems. There are two main computational problems related to KDE: (a) the fast
evaluation of the kernel density estimates f̂ , and (b) the fast estimation (under certain criteria) of the optimal bandwidth
matrix H (or scalar h in the univariate case). As for the first problem, a number of methods have been proposed, see for
example Raykar et al. (2010) for a comprehensive review. As for the second problem, relatively less attention has been
paid in the literature. An attempt of using the Message Passing Interface (MPI) was presented in Łukasik (2007). In Raykar
and Duraiswami (2006) the authors give an ϵ-exact approximation algorithm, where the constant ϵ controls the desired
arbitrary accuracy. Other techniques, like for example usage of Graphics Processing Units (GPUs), have also been used
(Andrzejewski et al., 2013). In this paper we are concernedwith fast estimation of the optimal bandwidth and are interested
in the multivariate case only. However, our results can be easily adapted also to the univariate case.

It is obvious fromEq. (1) that the naive direct evaluation of the KDE atm evaluation points for ndata points requiresO(mn)
kernel evaluations. Evaluation points can be of course the same as data points and then the computational complexity is
O(n2)making it very expensive, especially for large datasets and higher dimensions.

As for finding of the optimal bandwidth, the computational problems are even more evident. Typically, to complete all
the required computations for this task a sort of numerical optimization is needed. Usually, the computational complexity
of evaluating typical objective function is O(n2). During the optimization process the objective function must be evaluated
many times (often more that a hundred or so), making the problem of finding the optimal bandwidth very expensive, even
for moderate data dimensionalities and sizes.

In this paper we are concerned with an FFT-based method that was originally described in Wand (1994). In Wand and
Jones (1995, appendix D) an interesting illustrative toy example has been presented. From now on thismethodwill be called
Wand’s algorithm. It can be used for the KDE evaluation as well as for bandwidth selection problem and it works very well
for the univariate case given in Eq. (3). Unfortunately, its multivariate extension does not support unconstrained bandwidth
matrices (that is, if H ∈ F , where F is the set of all symmetric, positive definite d × d matrices). The method supports
only more restricted constrained bandwidth matrices (that is, if H ∈ D , where D is the set of all positive definite diagonal
matrices of the form H = diag(h2

1, . . . , h
2
d)). This limitation was successfully overcome by the authors and the main results

are presented in Gramacki and Gramacki (in press). In this paper we extend those results to the problem of fast (FFT-based)
estimation of unconstrained bandwidth matrices.

To the best of our knowledge, our paper is the first where this problem is presented and successfully solved using an
FFT-based approach. In this work we use excellent results presented in Chacón and Duong (2015), clearly the ones which
significantly simplifies computations of integrated density derivative functionals (IDDF) involving an arbitrary derivative
order (for details see Section 5). IDDFs are crucial elements in almost every modern bandwidth selection algorithm.

The remainder of the paper is organized as follows: in Section 3 we give an overview of the most popular and the most
frequently used bandwidth selectors. In Section 2, based on a simple example, we demonstrate the problem. In Section 4
we give details of a complete FFT-based algorithm for fast estimation of unconstrained bandwidth matrices. To make the
presentation of our algorithm clear, we do it on the basis of one of the simplest bandwidth selection algorithm, namely least
square cross validation (LSCV). In Section 5 we extend our results also for the IDDFs. In Section 6 we give results from some
numerical experiments based on both synthetic and real data sets. In Section 7 we conclude our paper.

2. Problem demonstration

As was mentioned in Section 1, Wand’s algorithm does not support unconstrained bandwidth matrices, which
considerably limits its practical usability. In this short demonstration we use a sample dataset Unicef presented in more
detail in Section 6.2. In Fig. 1(a) we show the reference density when the bandwidth was obtained by direct (i.e., non-FFT-
based) implementation of the LSCV algorithm, briefly presented in Section 3. After numerical minimization of the resulting
objective function we get the sought bandwidth. In Fig. 1(b) one can see the behavior of Wand’s original algorithm (i.e., FFT-
based) when the minimization of the objective function proceeds over H ∈ F . The density is totally corrupted. In Fig. 1(c)
we show the reference density when the bandwidth was obtained by direct (i.e., non-FFT-based) implementation of the
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