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a b s t r a c t

Overlap coefficient (OVL), the proportion of overlap area between two probability distribu-
tions, is a direct measure of similarity between two distributions. It is useful in microarray
analysis for the purpose of identifying differentially expressed biomarkers, especiallywhen
data followmultimodal distributionwhich cannot be transformed to normal. However, the
inference methods about OVL are quite sparse. This article proposes twomethods, a gener-
alized inference (GI) approach and a parametric bootstrapping (PB) method, are proposed
to construct confidence intervals of OVL under the assumption of normality. In conjunc-
tion with the EM algorithms, these methods are extended to mixture Gaussian (MG) dis-
tributions. The performances of these methods are evaluated empirically under a variety
of distributions including normal, gamma and mixture Gaussian. At last, the proposed ap-
proaches are applied to a published microarray dataset from a gene expression study of
three most prevalent adult lymphoid malignancies.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

Let X1 and X2 denote the continuous response variables for two user-defined groups (e.g. case and control) respectively, 2

and let fX1 and fX2 be the corresponding probability densities. The overlap area under the curves of fX1 and fX2 (denoted as 3

OVL) is 4

OVL =


∞

−∞

min[fX1(x|Θ1), fX2(x|Θ2)]dx, (1) 5

where Θ1 and Θ2 stand for parameter spaces for fX1(X1, Θ1) and fX2(X2, Θ2), respectively. If the distributions are discrete, 6

OVL can be calculated by replacing the integral with a summation. The OVL is scaleless with value ranging from 0 (i.e. two 7

distributions being completely distinct) to 1 (i.e. two distributions being identical). OVL directly measures the similarity 8

(or difference) between two distributions. Hence, it can serve as a diagnostic measure which is sensitive to any differences 9

between two distributions despite the structures of the underlying distributions. 10

The concept of OVL was first proposed by Weitzman (1970), and it was generalized to n dimensions by Bradley et al. 11

(1982). Since then,OVLhas beenwidely used in various practical applications, such as quantitative ecology (Gastwirth, 1975), 12

cluster analysis in mathematical geology (Sneath, 1977), stress–strength models of reliability analysis (Ichikawa, 1993), 13
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electromyographic assessment of muscular asymmetry (Ferrario et al., 2000), and treatment assessment in clinical trials1

(Mizuno et al., 2005).2

Recently, OVLwas introduced to genomic study by Silva-Fortes et al. (2012). The resurgence of OVL in genomic studies is3

attributable to the fact that it is a more convenient and proper diagnostic measure compared to other traditional diagnostic4

measures, such as AUC (area under receiver operating curve). High-throughput technologies such as microarray have5

revolutionized genomic studies in the past decade and the massive amount of data generated by these high-throughput6

methods poses a variety of challenges to existing statistical methods. Since a major goal of genomics is to identify genes7

significantly differentially expressed in diseased versus healthy groups, it is of paramount significance to find a diagnostic8

index which is sensitive to any differences between diseased and healthy groups. However, traditional diagnostic indices9

such as AUC mainly focus on examining the difference of means between groups, and fail to capture other possible10

differences, e.g. shapes between two distributions. For instance, bimodal or multimodal gene expression data commonly11

exist in genomic studies due to differing molecular subtypes or unknown subclasses within a population of cells. For such12

data, the diseased and healthy groups can differ dramatically, while having the same mean (Silva-Fortes et al., 2012; Parodi13

et al., 2008). Regardless of the underlying distributions, OVL serves as a convenient and proper measure of the diagnostic14

ability of biomarkers while traditional diagnostic indices such as AUC might fail. More details about OVL versus AUC can be15

found in Appendix A.16

The reason thatOVLhas not beenwidely used as a diagnosticmeasure is partially due to the lack ofmethods for confidence17

interval estimation of OVL. Currently, both existing parametric and nonparametric methods for OVL inference have certain18

limitations. Parametric methods (Al-Saidy et al., 2005; Al-Saleh and Samawi, 2007; Samawi and Al-Saleh, 2008; Chaubey19

et al., 2008; Helu and Samawi, 2011; Reiser and Faraggi, 1999; Mulekar and Mishra, 2000; Mizuno et al., 2005) have not yet20

been applied to general Gaussian (i.e. without equal mean or equal variance condition) or mixture Gaussian distributions,21

andnon-parametricmethods only focused on the point estimator for the caseswith large sample sizes (Clemons andBradley,22

2000; Mizuno et al., 2005; Schmid and Schmidt, 2006; Anderson et al., 2012). To popularize OVL as a diagnostic index, it is23

important to develop methods for estimating the confidence intervals of OVL.24

The goal of this paper is to propose methods for confidence interval estimation of OVL under a variety of distributions,25

including normal, normal transformed and multimodal distributions. In Section 2, we propose a generalized inference (GI)26

method and parametric bootstrapping (PB) method to construct the confidence interval estimation of OVL under normality27

for original and transformed data. Section 3 deals with mixture normal distributions by combining EM algorithms with the28

GI and PBmethods. Section 4 presents the details of simulation study to check the performance of the proposed method. In29

Section 5, the proposed methods are applied to a published microarray dataset from a gene expression study of three most30

prevalent adult lymphoidmalignancies. Section 6 concludes the paper with a discussion. Appendix A presents a brief review31

of AUC as well as a comparison between OVL and AUC .32

2. Under normality: original and transformed data33

This section presents two parametric approaches, i.e. a generalized inference approach (GI) and a parametric bootstrap-34

ping approach (PB) for confidence interval estimation based on normality. Let X11, X12, . . . , X1n1 and X21, X22, . . . , X2n2 de-35

note the n1 and n2 observations for the control (X1) and case (X2) groups, respectively. Assume Xij(i = 1, 2; j = 1, 2, . . . , ni)36

follow normal distribution with mean µi and variance σ 2
i . The parameter space Θi in formula (1) is (µi, σ

2
i ) where i = 1, 2.37

Hence OVL can be calculated as38

OVL =


min[fX1(x|µ1, σ

2
1 ), fX2(x|µ2, σ

2
2 )]dx. (2)39

Whennormality cannot be justified for original data but can be achieved via amonotonic transformation such as Box–Cox40

transformation (Box and Cox, 1964), the proposed methods can be applied to the transformed data due to the fact that OVL41

is invariant under monotonic transformation. This approach has been found to be useful in ROC analysis for a wide variety42

of scenarios (Molodianovitch et al., 2006; Fluss et al., 2005; Zou and Hall, 2000; Faraggi and Reiser, 2002; Schisterman et al.,43

2004). To be specific, a power transformation of the Box–Cox type is44

X (λ)
i =


Xλ
i − 1
λ

λ ≠ 0

log(Xi) λ = 0,
45

where it is assumed that X (λ)
i ∼ N(µi, σ

2
i ). For the transformed data, the appropriate likelihood function can be constructed46

as follows:47

l(µ1, µ2, σ1, σ2, λ|X1, X2) = l(µ1, σ1, λ|X1) + l(µ2, σ2, λ|X2),48

where l(µi, σi, λ|Xi) = −
1
2 log(2πσ 2

i ) −
ni

j=1
Xλ
ij −µi

2σ 2
i

+ (λ − 1)(
ni

j=1 log(Xij)). The parameters (λ, µ1, σ
2
1 , µ2, σ

2
2 ) can49

be estimated using the maximum likelihood estimation procedure, and the transformed data will be used for confidence50

interval estimation of OVL.51
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