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Overlap coefficient (OVL), the proportion of overlap area between two probability distribu-
tions, is a direct measure of similarity between two distributions. It is useful in microarray
analysis for the purpose of identifying differentially expressed biomarkers, especially when
data follow multimodal distribution which cannot be transformed to normal. However, the
inference methods about OVL are quite sparse. This article proposes two methods, a gener-
alized inference (GI) approach and a parametric bootstrapping (PB) method, are proposed
to construct confidence intervals of OVL under the assumption of normality. In conjunc-
tion with the EM algorithms, these methods are extended to mixture Gaussian (MG) dis-
tributions. The performances of these methods are evaluated empirically under a variety
of distributions including normal, gamma and mixture Gaussian. At last, the proposed ap-
proaches are applied to a published microarray dataset from a gene expression study of
three most prevalent adult lymphoid malignancies.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let X; and X, denote the continuous response variables for two user-defined groups (e.g. case and control) respectively,
and let fx, and fx, be the corresponding probability densities. The overlap area under the curves of fx, and fx, (denoted as

OVL) is

OVLZ/ min(fx, (x|&1), fx, (X|©2)]dx, (1)

where ©; and ©, stand for parameter spaces for fx, (X;, ®1) and fx, (X, ©,), respectively. If the distributions are discrete,
OVL can be calculated by replacing the integral with a summation. The OVL is scaleless with value ranging from O (i.e. two
distributions being completely distinct) to 1 (i.e. two distributions being identical). OVL directly measures the similarity
(or difference) between two distributions. Hence, it can serve as a diagnostic measure which is sensitive to any differences
between two distributions despite the structures of the underlying distributions.

The concept of OVL was first proposed by Weitzman (1970), and it was generalized to n dimensions by Bradley et al.
(1982).Since then, OVL has been widely used in various practical applications, such as quantitative ecology (Gastwirth, 1975),
cluster analysis in mathematical geology (Sneath, 1977), stress-strength models of reliability analysis (Ichikawa, 1993),
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electromyographic assessment of muscular asymmetry (Ferrario et al., 2000), and treatment assessment in clinical trials
(Mizuno et al., 2005).

Recently, OVL was introduced to genomic study by Silva-Fortes et al. (2012). The resurgence of OVL in genomic studies is
attributable to the fact that it is a more convenient and proper diagnostic measure compared to other traditional diagnostic
measures, such as AUC (area under receiver operating curve). High-throughput technologies such as microarray have
revolutionized genomic studies in the past decade and the massive amount of data generated by these high-throughput
methods poses a variety of challenges to existing statistical methods. Since a major goal of genomics is to identify genes
significantly differentially expressed in diseased versus healthy groups, it is of paramount significance to find a diagnostic
index which is sensitive to any differences between diseased and healthy groups. However, traditional diagnostic indices
such as AUC mainly focus on examining the difference of means between groups, and fail to capture other possible
differences, e.g. shapes between two distributions. For instance, bimodal or multimodal gene expression data commonly
exist in genomic studies due to differing molecular subtypes or unknown subclasses within a population of cells. For such
data, the diseased and healthy groups can differ dramatically, while having the same mean (Silva-Fortes et al., 2012; Parodi
et al., 2008). Regardless of the underlying distributions, OVL serves as a convenient and proper measure of the diagnostic
ability of biomarkers while traditional diagnostic indices such as AUC might fail. More details about OVL versus AUC can be
found in Appendix A.

The reason that OVL has not been widely used as a diagnostic measure is partially due to the lack of methods for confidence
interval estimation of OVL. Currently, both existing parametric and nonparametric methods for OVL inference have certain
limitations. Parametric methods (Al-Saidy et al., 2005; Al-Saleh and Samawi, 2007; Samawi and Al-Saleh, 2008; Chaubey
et al.,, 2008; Helu and Samawi, 2011; Reiser and Faraggi, 1999; Mulekar and Mishra, 2000; Mizuno et al., 2005) have not yet
been applied to general Gaussian (i.e. without equal mean or equal variance condition) or mixture Gaussian distributions,
and non-parametric methods only focused on the point estimator for the cases with large sample sizes (Clemons and Bradley,
2000; Mizuno et al., 2005; Schmid and Schmidt, 2006; Anderson et al., 2012). To popularize OVL as a diagnostic index, it is
important to develop methods for estimating the confidence intervals of OVL.

The goal of this paper is to propose methods for confidence interval estimation of OVL under a variety of distributions,
including normal, normal transformed and multimodal distributions. In Section 2, we propose a generalized inference (GI)
method and parametric bootstrapping (PB) method to construct the confidence interval estimation of OVL under normality
for original and transformed data. Section 3 deals with mixture normal distributions by combining EM algorithms with the
GI and PB methods. Section 4 presents the details of simulation study to check the performance of the proposed method. In
Section 5, the proposed methods are applied to a published microarray dataset from a gene expression study of three most
prevalent adult lymphoid malignancies. Section 6 concludes the paper with a discussion. Appendix A presents a brief review
of AUC as well as a comparison between OVL and AUC.

2. Under normality: original and transformed data

This section presents two parametric approaches, i.e. a generalized inference approach (GI') and a parametric bootstrap-
ping approach (PB) for confidence interval estimation based on normality. Let X11, X1, .. ., Xin, and X1, Xa2, . . ., Xop, de-
note the ny and n, observations for the control (X;) and case (X,) groups, respectively. Assume X;;(i=1,2;j=1,2,..., )
follow normal distribution with mean p; and variance aiz. The parameter space ®; in formula (1) is (u;, 0,-2) wherei =1, 2.
Hence OVL can be calculated as

ovi = [ minif, (s, 7). o . o3 1. @)

When normality cannot be justified for original data but can be achieved via a monotonic transformation such as Box-Cox
transformation (Box and Cox, 1964), the proposed methods can be applied to the transformed data due to the fact that OVL
is invariant under monotonic transformation. This approach has been found to be useful in ROC analysis for a wide variety
of scenarios (Molodianovitch et al., 2006; Fluss et al., 2005; Zou and Hall, 2000; Faraggi and Reiser, 2002; Schisterman et al.,
2004). To be specific, a power transformation of the Box-Cox type is

X+ —1 st 0
A
XP = 7

log(X;)) A =0,

where it is assumed that le ~ N(ui, aiz). For the transformed data, the appropriate likelihood function can be constructed
as follows:

(1, na, o1, 02, AX1, X2) = (i1, o1, AX7) + Uz, 02, A|X2),

R (R .
where [(11;, 03, AX;) = —3log(2mo?) — Y, "207; + (0 — DL, log(X;)). The parameters (A, (41, 07, (42, 05) can

be estimated using the maximum likelihood estimation procedure, and the transformed data will be used for confidence
interval estimation of OVL.
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