
Computational Statistics and Data Analysis 106 (2017) 103–126

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Sparse seasonal and periodic vector autoregressive modeling✩

Changryong Baek a,∗, Richard A. Davis b, Vladas Pipiras c

a Department of Statistics, Sungkyunkwan University, 25-2, Sungkyunkwan-ro, Jongno-gu, Seoul, 110-745, Republic of Korea
b Department of Statistics, Columbia University, 1255 Amsterdam Avenue, MC 4690, New York, NY 10027, USA
c Department of Statistics and Operations Research, UNC at Chapel Hill, CB#3260, Hanes Hall, Chapel Hill, NC 27599, USA

a r t i c l e i n f o

Article history:
Received 16 October 2015
Received in revised form 3 September 2016
Accepted 13 September 2016
Available online 16 September 2016

Keywords:
Seasonal vector autoregressive (SVAR)
model

Periodic vector autoregressive (PVAR)
model

Sparsity
Partial spectral coherence (PSC)
Adaptive lasso
Variable selection

a b s t r a c t

Seasonal and periodic vector autoregressions are two common approaches to modeling
vector time series exhibiting cyclical variations. The total number of parameters in these
models increases rapidly with the dimension and order of the model, making it difficult to
interpret the model and questioning the stability of the parameter estimates. To address
these and other issues, twomethodologies for sparse modeling are presented in this work:
first, based on regularization involving adaptive lasso and, second, extending the approach
of Davis et al. (2015) for vector autoregressions based on partial spectral coherences.
The methods are shown to work well on simulated data, and to perform well on several
examples of real vector time series exhibiting cyclical variations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this work, we introduce methodologies for sparse modeling of stationary vector (q-dimensional) time series data
exhibiting cyclical variations. Sparse models are gaining traction in the time series literature for similar reasons sparse
(generalized) linear models are used in the traditional setting of i.i.d. errors. Such models are particularly suitable in a high-
dimensional context, for which the number of parameters often grows as q2 (as for example with vector autoregressive
models considered below) and becomes prohibitively large compared to the sample size even for moderate q. Sparse
models also ensure better interpretability of the fitted models and numerical stability of the estimates, and tend to improve
prediction. See, for example, Lange (2010, Section 16.5, p. 312) for a discussion related to numerical stability, and Hastie
et al. (2013, Section 3.4), related to predictions (in the general context of shrinkage estimators).

In the vector time series context, sparse modeling has been considered for the class of vector autoregressive (VAR)
models:

Xn − µ = A1(Xn−1 − µ) + · · · + Ap(Xn−p − µ) + ϵn, n ∈ Z, (1.1)

where Xn = (X1,n, . . . , Xq,n)
′ is a q-vector time series, A1, . . . , Ap are q×qmatrices,µ is the overall constantmean vector and

ϵn arewhite noise (WN) error terms. Regularization approaches basedon lasso and its variantswere taken inHsu et al. (2008),
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Fig. 1. Top: Monthly flu trend in NC. Bottom: 23 h ozone levels at a CA location. Respective sample ACFs and PACFs are given.

Shojaie andMichailidis (2010), Song and Bickel (2011),Medeiros andMendes (2012), Basu andMichailidis (2015), Nicholson
et al. (2015) and Kock and Callot (2015), with applications to economics, neuroscience (e.g. functional connectivity among
brain regions), biology (e.g. reconstructing gene regulatory network from time course data), and environmental science
(e.g. pollutants levels over time). As usual, the model (1.1) will be abbreviated as

Φ(B)(Xn − µ) = ϵn, n ∈ Z, (1.2)

where Φ(B) = 1 − A1B − · · · − ApBp and B is the backshift operator.
In a different approach, Davis et al. (2015) introduced an alternative 2-stage procedure for sparse VAR modeling. In the

first stage, all pairs of component series are ranked based on the estimated values of their partial spectral coherences (PSCs),
defined as

sup
λ

|PSCX
jk(λ)|2 := sup

λ

|gX
jk(λ)|2

gX
jj (λ)gX

kk(λ)
, j, k = 1, . . . , q, j ≠ k, (1.3)

where gX (λ) = f X (λ)−1 with f X being the spectral density matrix of X . Then, the orderp and the top M pairs are found
whichminimize the BIC(p,M) value, and the coefficients of matrices Ar are set to 0 for all pairs of indices j, k not included inM . In the second stage, the estimates of the remaining non-zero coefficients are ranked according to their t-statistic values.
Again, the topm∗ of the coefficients are selected that minimize a suitable BIC, and then the rest of the coefficients are set to
0. As shown in Davis et al. (2015), this 2-stage procedure outperforms regular lasso. The basic idea of this approach is that
small PSCs do not increase the likelihood sufficiently to warrant the inclusion of the respective coefficients of matrices Ar in
the model. Partial spectral coherences have been used extensively in the time series literature, especially in connection to
graphical modeling (see e.g. Dahlhaus, 2000; Bach and Jordan, 2004; Fried and Didelez, 2005; Eichler, 2012).

We shall extend here the regularization approach based on lasso and the approach of Davis et al. (2015) based on PSCs to
sparse modeling of vector time series data exhibiting cyclical variations. The motivation here is straightforward. Consider,
for example, the benchmark flu trends and pollutants series studied through sparse VAR models by Davis et al. (2015), and
others. Fig. 1 depicts the plots of (the logs of) their two component series with the respective sample ACFs and PACFs. The
cyclical nature of the series can clearly be seen from the figure. The same holds for other component series (not illustrated
here).

Cyclical features of component series are commonly built into a larger vector model by using one of the following two
approaches. A seasonal VARmodel (SVAR(P, p)model, for short; not to be confused with the so-called structural VAR) is one
possibility, defined as

Φ(B)Φs(Bs)(Xn − µ) = ϵn, n ∈ Z, (1.4)

whereΦ(B) and ϵn are as in (1.2),Φs(Bs) = 1−As,1Bs
−· · ·−As,PBPs with q×qmatrices As,1, . . . , As,P ,µ denotes the overall

mean and sdenotes the period. This is the vector version of themultiplicative seasonal ARmodel proposedbyBox and Jenkins
(1976). Note that the number of parameters of the SVAR(P, p)model (including the covariancematrix of innovations terms)
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