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a b s t r a c t

Wavelet thresholding generally assumes independent, identically distributed normal
errors when estimating functions in a nonparametric regression setting. VisuShrink
and SureShrink are just two of the many common thresholding methods based on
this assumption. When the errors are not normally distributed, however, few methods
have been proposed. A distribution-free method for thresholding wavelet coefficients
in nonparametric regression is described, which unlike some other non-normal error
thresholding methods, does not assume the form of the non-normal distribution is known.
Improvements are made to an existing even–odd cross-validation method by employing
block thresholding and level dependence. The efficiency of the proposed method on
a variety of non-normal errors, including comparisons to existing wavelet threshold
estimators, is shown on simulated data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

Wavelet thresholding has been a staple of statistical functional estimation for years. Donoho and Johnstone (1994, 2

1995, 1998) introduced methods for thresholding the wavelet coefficients derived from the wavelet transformation of the 3

observed data in nonparametric regression: 4

yi = f (xi)+ εi, i = 1, 2, . . . , n, (1) 5

where the εi are independent and identically distributed (i.i.d.) Gaussian errorswithmean zero and constant varianceσ 2 and 6

the sample points xi = i/n are equally spaced over an interval. By thresholding observed wavelet coefficients representing 7

noise, a smooth estimate of the underlying can be obtained. The assumptions on the errors have been loosened in only a 8

handful of papers on wavelet thresholding. 9

Neumannandvon Sachs (1995) discusswavelet thresholdingmethods in non-Gaussian andnon-i.i.d. situations. Themain 10

idea of their paper is that, in many situations, asymptotic normality can be proven and traditional thresholding methods 11

can be used. Given independent observations, they demonstrate a way to show equivalence to the Gaussian case via strong 12

approximations. They also derive asymptotic normality in the case of weak dependence. 13

Antoniadis and Fryzlewicz (2006) propose a scale-dependent wavelet thresholding procedure for Gaussian noise, and 14

then extend it to include non-Gaussian noise. However, the paper assumes not only that the non-normal errors are i.i.d. 15
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with mean zero, but also that they follow a known specified distribution. They determine a suitable threshold for each1

resolution level by mimicking the arguments of Donoho and Johnstone in the Gaussian case.2

Pensky and Sapatinas (2007) investigate the performance of Bayes factor estimators in wavelet regression models with3

i.i.d. non-Gaussian errors. They choose a general distribution ηj for the errors and assume they possess symmetric PDFs4

on the reals that are unimodal, positive, and finite at zero. One advantage of their method is that knowledge of the true5

distribution of the errors is not needed in order to obtain an optimal estimator of f . However, their estimators are only6

preferable for irregular functions with high peaks, and produce sub-optimal results when compared with other methods7

under certain prior distributions.8

Nason (1996) introduces an even–odd cross-validation method for choosing the threshold parameter in wavelet9

shrinkage. His statistic compares an interpolated wavelet estimator from the even reconstructed data to the odd noisy data10

and vice versa over various threshold values, then applies a sample size correction.11

In this paper, we propose a completely nonparametric method to threshold wavelet coefficients that enhances12

Nason’s cross-validation method by incorporating level-dependent block thresholding. Block thresholding thresholds13

wavelet coefficients in groups, rather than individually, with the goal of increasing precision by utilizing information14

about neighboring coefficients (Cai, 1999). Nason’s method uses term-by-term thresholding, so it is reasonable to ask if15

incorporating blocking will have an analogous effect here.16

Nason also makes use of a global threshold, the same threshold value for all considered coefficients. This is17

similar to VisuShrink of Donoho and Johnstone (1994). However, level-dependent thresholding has also been shown to18

have advantages over universal thresholds. For example, SureShrink (Donoho and Johnstone, 1995), a level-dependent19

thresholding method, has been shown to have lower mean squared error (MSE) than VisuShrink. Each of these20

modifications, blocking and level dependence, improves performance with distribution-based thresholds and are thus21

natural considerations for attempting to improve cross-validation thresholding.22

Our method does not put any assumptions on the errors except that they are i.i.d. and centered at zero. Unlike Neumann23

and von Sachs (1995), we do not discuss asymptotic normality, but instead develop a method specifically meant to handle24

non-Gaussian errors. Nor dowe require that the distribution of the errors be known, as do Antoniadis and Fryzlewicz (2006).25

Unlike that of Pensky and Sapatinas (2007), no proper choice of prior is required for our method.26

This paper is divided as follows. Section 2 provides a brief background on wavelets, wavelet notation, and wavelet27

thresholdingmethods before the details of the proposed estimator are described in Section 3. Section 4 contains a simulation28

comparison of the proposed estimator to the Nason estimator, VisuShrink, and other current methods which may assume29

normal errors. A discussion of the results and methods is given in the final section.30

2. Background31

2.1. Wavelets32

Wavelets are an orthogonal series representation of functions in the space of square-integrable functions L2(R). Ogden33

(1997) and Vidakovic (1999) offer good introductions to wavelet methods and their properties. Let φ and ψ represent the34

father and mother wavelet functions, respectively. There are many choices for these two functions, see Daubechies (1992).35

Here, φ and ψ are chosen to be compactly supported and to generate an orthonormal basis. Let36

φjk(x) = 2j/2φ(2jx − k)37

and38

ψjk(x) = 2j/2ψ(2jx − k)39

be the translations and dilations of φ and ψ , respectively. For any fixed integer j0,40

{φj0k, ψjk|j ≥ j0, k an integer}41

is an orthonormal basis for L2(R). Let42

ξjk = ⟨f , φjk⟩43

and44

θjk = ⟨f , ψjk⟩45

be the usual inner product of a function f ∈ L2(R) with the wavelet basis functions. Then f can be expressed as an infinite46

series:47

f (x) =


k

ξj0kφj0k(x)+

∞
j=j0


k

θjkψjk(x). (2)48

The function f is not known and must be estimated. This is done using the discrete wavelet transform (DWT) of Mallat49

(1999). If f is sampled as a vector of dyadic length n = 2J for some positive integer J , then the DWT will provide a total of n50



Download English Version:

https://daneshyari.com/en/article/4949404

Download Persian Version:

https://daneshyari.com/article/4949404

Daneshyari.com

https://daneshyari.com/en/article/4949404
https://daneshyari.com/article/4949404
https://daneshyari.com

