
Formal specification and integration of distributed security policies

Mohamed Mejri a, Hamdi Yahyaoui b,n

a Computer Science Department, Laval University, Canada
b Computer Science Department, Kuwait University, Kuwait

a r t i c l e i n f o

Article history:
Received 17 May 2016
Received in revised form
22 November 2016
Accepted 22 December 2016
Available online 3 January 2017

Keywords:
Security policies
Formal languages
Semantics
Integration
XACML

a b s t r a c t

We propose in this paper the Security Policy Language (SePL), which is a formal language for
capturing and integrating distributed security policies. The syntax of SePL includes several
operators for the integration of policies and it is endowed with a denotational semantics that is
a generic semantics, i.e., which is independent of any evaluation environment. We prove the
completeness of SePL with respect to set theory. Furthermore, we provide a formalization of a
large subset of the eXtensible Access Control Markup Language (XACML), which is the well-
known standard informal specification language of Web security policies. We also provide a
semantics for XACML policy combining algorithms.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, there is a drastic growing of security threats, which benefit from security breaches in systems to jeopardize their
security and achieve malicious goals such as thief and illegal access to information, identity masquerading, etc. The consequences of
security attacks can be fatal to institutions and companies, which made security a major concern for people in industry and
academia. In this context, building secure systems is becoming a paramount challenge mainly in a distributed environment where
each system has its own security policies, which may conflict with policies of other systems. In such environment, security policies
specification is based on standard languages, which are often informal and complex such as the eXtensible Access Control Markup
Language (XACML) [30]; the well-known standard informal specification language of Web security policies. Such complexity makes
the learning curve of the proposed languages very high and increases the likelihood of having design errors. Accordingly, there is a
desideratum for providing simple and formal models that capture such policies and allow to reason about them.

There are two main classes of approaches for formalizing security policies: Model and language based methods. Model
based approaches leverage formalisms such as transition systems to capture policies. Model checking of system compliance
to security properties is one of the main targets behind the design of such models. The main issue with such methods is
their limited scalability when applied to huge policies.

Regarding language based approaches, several languages were proposed to specify security policies. XML-based specification
languages use XML tags to describe security policies and rules between subjects and resources. Famous XML-based specification
languages include Security Assertion Markup Language (SAML) [22], XML Access Control Policy Specification Language (XACL) [10],
and Extensible Access Markup Control Language (XACML) [30]. The issue with such languages is that they are machine readable
and so difficult to be understood. Furthermore, they lack the formal aspect that allows reasoning about them. Declarative languages
provide a high level of simplicity and readability for the specification of security policies. We mention Ponder [11] as a famous
declarative, object-oriented language for specifying policies for the security andmanagement of distributed systems. Themain issue

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cl

Computer Languages, Systems & Structures

http://dx.doi.org/10.1016/j.cl.2016.12.004
1477-8424/& 2016 Elsevier Ltd. All rights reserved.

n Correspondence to: Computer Science Department, Kuwait University, P.O. Box 5969, Safat 13060, State of Kuwait, Kuwait.
E-mail addresses: mejri@ift.ulaval.ca (M. Mejri), hamdi@cs.ku.edu.kw (H. Yahyaoui).

Computer Languages, Systems & Structures 49 (2017) 1–35

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2016.12.004
http://dx.doi.org/10.1016/j.cl.2016.12.004
http://dx.doi.org/10.1016/j.cl.2016.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.12.004&domain=pdf
mailto:mejri@ift.ulaval.ca
mailto:hamdi@cs.ku.edu.kw
http://dx.doi.org/10.1016/j.cl.2016.12.004
http://dx.doi.org/10.1016/j.cl.2016.12.004


with such languages is the lack of abstractness that does not allow to reason about correctness and completeness issues. Event
based languages, such as Policy Description Language (PDL) [9] and DEFCon Policy Language (DPL) [24], leverage events and actions
to model security policies and rules between subjects and resources. Some of these languages put more focus on actions rather
than data while others express constraints on event flows. The main issue with such languages is their complexity and sometimes
their modeling of low level details. Algebraic languages allow to formally define security policies. An important feature of algebraic
security policy languages is their simplicity, powerful expressiveness and compactness.

We advocate in this work the need for a simple (users do not need to know a heavy mathematical background to
understand it), formal (precise and rigorous) and concise (compact with a short grammar) algebraic language to guarantee
the absence of inconsistencies in policies, reason about their integration, and prove their correctness. To achieve this goal,
we define in this paper a new language called Security Policy Language (SePL) for the specification of distributed security
policies. We also show how the language can be leveraged to define the integration of policies. In addition, we present a
formalization of a large subset of the latest version of XACML based on SePL, which provides a simple understanding of that
language. The contributions of this paper are the following:

� The proposal of the Security Policy Language (SePL), a multivalued language for the specification and the integration of
security policies.

� A BNF grammar for a large subset of XACML-3.0.
� A translation function from the XACMLs BNF grammar to SePL.
� The formalization of most of the XACML policy combining algorithms (including permit-overrides, deny-overrides, Only-

one-applicable, Deny-unless-permit, Permit-unless-deny) using SePL.

The paper is organized as follows. In Section 2, we provide the background related to security policies. Section 3 is
dedicated to the presentation of the syntax and semantics of SePL. We provide a formalization of XACML based on SePL in
Section 4. Section 5 is devoted to the proof of completeness of SePL. In Section 6, we provide a comparison of our work with
the related work. Finally, we provide some concluding remarks in Section 7.

2. Security policies

A security policy is a set of rules that define constraints on users while interacting with a system. Security policies are meant to
reinforce three main properties: confidentiality, integrity and availability. Confidentiality refers to keeping the content of a com-
munication secret. Integrity refers to keeping the content unchanged. Availability refers to the guarantee of reliable access to the
information by authorized people. Different formal models for confidentiality and integrity were devised. Famous models are Bell-
La Padula model [4] (confidentiality policy model) and Biba model [3] (integrity policy model).

An access control policy is related to system access rules. The rules specify who (subject) can access what (object) and under which
conditions. Access control models are categorized as either discretionary or non-discretionary. There are threewell known access control
models: Discretionary Access Control (DAC), Mandatory Access Control (MAC), and Role Based Access Control (RBAC). DAC is a policy
specified by the owner of an object. MAC refers to allowing access to a resource if there are rules which allow a user to access that
resource. RBAC is an access policy that gives access rights to users based on their roles in the system.

Distributed security policies come with the concept of distribution of the policies and the decisions on the elements of a
distributed system. Inconsistencies may arise due to the lack of a central entity that controls these policies. Henceforth,
there is a need for checking the consistency and conformance of such type of security policies. SePL is a research initiative
towards achieving this goal.

3. SePL syntax and semantics

SePL (Security Policy Language) is not intended to substitute XACML but a kind of an alternative syntax for it with a solid
semantic ground. XACML is based on XML which has the benefit of interoperability, but it has many drawbacks:

� XACML is very verbose, making the specification of a simple policy long by including XML structures and by prefixing
identifiers by long XACML namespaces.

� The semantics of XACML security policies becomes error prone when they involve many rules with different combining
algorithms.

� Even if XACML is intended to be easily used by security managers, it is neither suitable for programmers nor for theoreticians.
Programmer community has developed their own language, named ALFA [23], that is close to Java and C# to write XACML
policies and developed a tool to translate formulae from ALFA to XACML. Theoreticians better prefer a concise language like
SePL, where the semantics of any syntactic expression is a term of a domain that is computed by a function.

SePL provides a concise BNF syntax that is equipped with a formal semantics based on set theory. It can be leveraged to
do formal verification and analysis of attribute based languages like XACML. The use of formal languages, like SePL, is helpful

M. Mejri, H. Yahyaoui / Computer Languages, Systems & Structures 49 (2017) 1–352



Download English Version:

https://daneshyari.com/en/article/4949422

Download Persian Version:

https://daneshyari.com/article/4949422

Daneshyari.com

https://daneshyari.com/en/article/4949422
https://daneshyari.com/article/4949422
https://daneshyari.com

