
Author’s Accepted Manuscript

Optimisation of Language-Integrated Queries by
Query Unnesting

Tomasz Marek Kowalski, Radosław Adamus

PII: S1477-8424(16)30024-0
DOI: http://dx.doi.org/10.1016/j.cl.2016.09.002
Reference: COMLAN236

To appear in: Computer Language

Received date: 8 February 2016
Accepted date: 11 September 2016

Cite this article as: Tomasz Marek Kowalski and Radosław Adamus,
Optimisation of Language-Integrated Queries by Query Unnesting, Computer
Language, http://dx.doi.org/10.1016/j.cl.2016.09.002

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/cl

http://www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2016.09.002
http://dx.doi.org/10.1016/j.cl.2016.09.002

Optimisation of Language-Integrated
Queries by Query Unnesting

Authors:

Tomasz Marek Kowalski, email: t.kowalski@iis.p.lodz.pl (corresponding author)

Radosław Adamus, email: r.adamus@iis.p.lodz.pl

Affiliation:

Institute of Applied Computer Science

Lodz University of Technology

ul. Stefanowskiego 18/22

90-924 Lodz, Poland

Abstract
Native functional-style querying extensions for programming languages (e.g., LINQ or Java 8

streams) are widely considered as declarative. However, their very limited degree of optimisation

when dealing with local collection processing contradicts this statement. We show that developers

constructing complex LINQ queries or combining queries expose themselves to the risk of severe

performance deterioration. For an inexperienced programmer, a way of getting an appropriate query

form can be too complicated. Also, a manual query transformation is justified by the need of

improving performance, but achieved at the expense of reflecting an actual business goal. As a

result, benefits from a declarative form and an increased level of abstraction are lost.

In this paper, we claim that moving of selected methods for automated optimisation elaborated for

declarative query languages to the level of imperative programming languages is possible and

desired. Our approach is based on the assumption that programmer is able distinguish whether a

language-integrated query is intentionally used to introduce some side-effects or its sole purpose is

to only query the data. We propose two optimisation procedures through query unnesting designed

to avoid unnecessary multiple calculations in collection-processing constructs based on higher-order

functions. We have implemented and verified this idea as a simple proof-of-concept LINQ

optimiser library.

1 Introduction
Since the release of LINQ (Language-Integrated Query) for the Microsoft .NET platform in 2007,

there has been a significant progress in the topic of extending programming languages with native

querying capabilities [1]. Programming languages are mostly imperative; their semantics relies on

the program stack concept. They operate on volatile data and the meaning of collections is rather

secondary. On the other hand, query languages are usually declarative and their semantics often

bases on some forms of algebras or logics; these languages operate mostly on collections of

persistent data. Declarativity of a query language reveals itself mostly when considering operators

for collections. In the case of an imperative language, operating on a collection takes a form of an

explicit loop iterating over collection elements in a specified order, while in query languages one

declares a desired result (e.g., a sub-collection containing elements of a base collection matching a

given selection predicate) and an algorithm of filtration itself is not an element of an expression

representing the query. Based on characteristics of data structures, a database state and existence of

additional auxiliary structures (e.g., indices), an execution environment can choose the most

promising algorithm (a plan) for evaluation of the query. Declarativity allows one to postpone

selection of an algorithm even to the moment of an actual query execution. In this paper we discuss

to what extent solutions for processing of collections within programming languages are actually

declarative. To do so, we made an extensive research on query optimisation. In databases it is a

Download English Version:

https://daneshyari.com/en/article/4949436

Download Persian Version:

https://daneshyari.com/article/4949436

Daneshyari.com

https://daneshyari.com/en/article/4949436
https://daneshyari.com/article/4949436
https://daneshyari.com

