
Author’s Accepted Manuscript

Refinement of structural heuristics for model
checking of concurrent programs through data
mining

Reed Milewicz, Peter Pirkelbauer

PII: S1477-8424(16)30079-3
DOI: http://dx.doi.org/10.1016/j.cl.2016.06.001
Reference: COMLAN219

To appear in: Computer Language

Received date: 4 December 2015
Revised date: 19 May 2016
Accepted date: 10 June 2016

Cite this article as: Reed Milewicz and Peter Pirkelbauer, Refinement of
structural heuristics for model checking of concurrent programs through data
mining, Computer Language, http://dx.doi.org/10.1016/j.cl.2016.06.001

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/cl

http://www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2016.06.001
http://dx.doi.org/10.1016/j.cl.2016.06.001


Refinement of Structural Heuristics for Model
Checking of Concurrent Programs through Data

Mining

Reed Milewicz1 and Peter Pirkelbauer1

University of Alabama at Birmingham
Birmingham, AL 35223

rmmilewi@cis.uab.edu pirkelbauer@uab.edu

Abstract. Detecting concurrency bugs in multi-threaded programs through
model-checking is complicated by the combinatorial explosion in the
number of ways that different threads can be interleaved to produce
different combinations of behaviors. At the same time, concurrency bugs
tend to be limited in their scope and scale due to the way in which
concurrent programs are designed, and making visible the rules that
govern the relationships between threads can help us to better iden-
tify which interleavings are worth investigating. In this work, patterns
of read-write sequences are mined from a single execution of the target
program to produce a quantitative, categorical model of thread behav-
iors. This model is exploited by a novel structural heuristic. Experiments
with a proof-of-concept implementation, built using Java Pathfinder and
WEKA, demonstrate that this heuristic locates bugs faster and more
reliably than a conventional counterpart.

1 Introduction

For the purposes of this work, we define a thread as a sequence of instruction
blocks that are linked to one another by a chain of continuations. A thread is
the smallest unit of execution that can be handled independently by a sched-
uler, and threads are presented here as a general-purpose solution for managing
concurrency. A multi-threaded program executing on a multi-core architecture
consists of the birth, life, and dissolution of arbitrarily many threads operating
in parallel across a fixed number of cores. In the analyses of multi-threaded,
concurrent programs, our task is to characterize interactions between threads
and other threads, and between threads and the execution environment. Mean-
while, concurrency bug is an umbrella term for classes of bugs which arise as a
consequence of improper synchronization between threads over the use of shared
resources, such as deadlocks, race conditions, and atomicity violations. Our goal
is to detect concurrency bugs that could interfere with the proper execution of
a concurrent program through careful analysis.

Recent history is replete with high profile news stories of concurrency bugs
causing dramatic and spectacular failures. One especially powerful example, the



Download English Version:

https://daneshyari.com/en/article/4949439

Download Persian Version:

https://daneshyari.com/article/4949439

Daneshyari.com

https://daneshyari.com/en/article/4949439
https://daneshyari.com/article/4949439
https://daneshyari.com

