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Abstract. Detecting concurrency bugs in multi-threaded programs through
model-checking is complicated by the combinatorial explosion in the
number of ways that different threads can be interleaved to produce
different combinations of behaviors. At the same time, concurrency bugs
tend to be limited in their scope and scale due to the way in which
concurrent programs are designed, and making visible the rules that
govern the relationships between threads can help us to better iden-
tify which interleavings are worth investigating. In this work, patterns
of read-write sequences are mined from a single execution of the target
program to produce a quantitative, categorical model of thread behav-
iors. This model is exploited by a novel structural heuristic. Experiments
with a proof-of-concept implementation, built using Java Pathfinder and
WEKA, demonstrate that this heuristic locates bugs faster and more
reliably than a conventional counterpart.

1 Introduction

For the purposes of this work, we define a thread as a sequence of instruction
blocks that are linked to one another by a chain of continuations. A thread is
the smallest unit of execution that can be handled independently by a sched-
uler, and threads are presented here as a general-purpose solution for managing
concurrency. A multi-threaded program executing on a multi-core architecture
consists of the birth, life, and dissolution of arbitrarily many threads operating
in parallel across a fixed number of cores. In the analyses of multi-threaded,
concurrent programs, our task is to characterize interactions between threads
and other threads, and between threads and the execution environment. Mean-
while, concurrency bug is an umbrella term for classes of bugs which arise as a
consequence of improper synchronization between threads over the use of shared
resources, such as deadlocks, race conditions, and atomicity violations. Our goal
is to detect concurrency bugs that could interfere with the proper execution of
a concurrent program through careful analysis.

Recent history is replete with high profile news stories of concurrency bugs
causing dramatic and spectacular failures. One especially powerful example, the
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