
Effective abstractions for verification under relaxed
memory models

Andrei Dan a, Yuri Meshman b, Martin Vechev a, Eran Yahav b

a ETH Zurich, Switzerland
b Technion, Israel

a r t i c l e i n f o

Article history:
Received 3 June 2015
Received in revised form
16 February 2016
Accepted 17 February 2016
Available online 2 March 2016

Keywords:
Abstract interpretation
Relaxed memory models

a b s t r a c t

We present a new abstract interpretation based approach for automatically verifying
concurrent programs running on relaxed memory models. Our approach is based on three
key insights: (i) Although the behaviors of relaxed memory models (e.g., TSO and PSO) are
naturally captured by store buffers, directly using such encodings substantially decreases
the accuracy of program analysis due to shift operations on buffer contents. The scalability
and accuracy of program analysis can be greatly improved by eliminating the expensive
shifting of store buffer contents, and we present a new abstraction of the memory model
that accomplishes this goal. (ii) The precision of the analysis can be further improved by
an encoding of store buffer sizes using leveraged knowledge of the abstract interpretation
domain. (iii) A novel source-to-source transformation that realizes the above two tech-
niques makes it possible to use of state-of-the-art analyzers directly under sequential
consistency (SC): given a program P and a relaxed memory model M, it produces a new
program PM where the behaviors of P running on M are over-approximated by the
behavior of PM running on SC.

We implemented our approach and evaluated it on a set of finite and infinite-state
concurrent algorithms under two memory models: Intel's x86 TSO and PSO. Experimental
results indicate that our technique achieves better precision and efficiency than prior
work: we can automatically verify algorithms with fewer fences, faster and with lower
memory consumption.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

To improve performance, modern hardware architectures support relaxed memory models. A relaxed memory model
allows the underlying architecture to reorder memory operations and execute them non-atomically. As a result, a con-
current program can have additional behaviors that would not be possible to obtain under the intuitive, sequentially
consistent setting [20]. These additional relaxed behaviors complicate the task of reasoning about the correctness of the
program, manually and automatically.

This necessitates the development of new, scalable and precise analysis techniques for automatic verification of
(potentially infinite-state) concurrent programs running on relaxed memory models. Automatic verification in this setting is

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cl

Computer Languages, Systems & Structures

http://dx.doi.org/10.1016/j.cl.2016.02.003
1477-8424/& 2016 Elsevier Ltd. All rights reserved.

E-mail addresses: andrei.dan@inf.ethz.ch (A. Dan), yurime@cs.technion.ac.il (Y. Meshman), martin.vechev@inf.ethz.ch (M. Vechev),
yahave@cs.technion.ac.il (E. Yahav).

Computer Languages, Systems & Structures 47 (2017) 62–76

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2016.02.003
http://dx.doi.org/10.1016/j.cl.2016.02.003
http://dx.doi.org/10.1016/j.cl.2016.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.02.003&domain=pdf
mailto:andrei.dan@inf.ethz.ch
mailto:yurime@cs.technion.ac.il
mailto:martin.vechev@inf.ethz.ch
mailto:yahave@cs.technion.ac.il
http://dx.doi.org/10.1016/j.cl.2016.02.003
http://dx.doi.org/10.1016/j.cl.2016.02.003


a challenging problem as the relaxed memory model can significantly increase the number and diversity of new behaviors,
which in turn affects the overall precision and scalability of the analysis.

Our approach: We present a new analysis system for verifying concurrent programs running on relaxed memory models
such as Intel's �86 TSO and PSO buffered memory models. Our approach relies first, on a new abstraction of the memory
model that eliminates some of the expensive work in managing the store buffers, thus significantly reducing the analysis
effort and improving its precision. This abstraction is also directly applicable and useful for other verification frameworks,
both finite and infinite-state (e.g., bounded model checking, abstract interpretation and predicate abstraction). Our approach
also leverages knowledge of the particular program analysis used in this work (abstract interpretation with numerical
domains) to encode the size of the store buffers in a way that reduces the loss of precision under that abstract domain.

We incorporate the above two ideas into a robust analyzer. The analyzer uses a source-to-source transformation that
enables direct use of existing program analyzers under sequential consistency for verifying concurrent programs running on
relaxed memory models. That is, given a program P, a specification S and a memory model M, the transformation auto-
matically constructs a new program PM such that if PMFSCS then PFMS. The program PM contains an abstraction of the
relaxed behaviors induced by M, thereby ensuring the soundness of the approach.

While prior works [12,4,22] also suggest source-to-source transformations, we show experimentally that our approach is
more precise and efficient: it enables verification of (infinite-state) concurrent algorithms that prior work cannot verify, and
for programs where prior work succeeds, our approach is faster and requires less memory. This work also represents one of
the few studies on using abstract interpretation for verifying properties of infinite-state concurrent programs running on
relaxed memory models. Moreover, our approach requires no user annotations.

Main contributions: The main contributions of this paper are:

� A new abstraction for the store buffers of the memory model that eliminates expensive shifting of buffer contents. This
abstraction reduces the workload on subsequent program analyzers and improves their scalability and precision.

� A source-to-source transformation that realizes the new abstraction (and the memory model effects), producing a
program that can be soundly analyzed with verifiers for sequential consistency. The translation also leverages knowledge
of the underlying abstract domain in order to encode the size of the store buffers in a way which reduces the overall loss
of analysis precision.

� A complete implementation of the approach integrated with CONCURINTERPROC [16], a tool based on abstract interpretation
[10] with numerical abstract domains that can analyze infinite-state concurrent programs under sequential consistency.

� A thorough empirical evaluation on a range of challenging concurrent algorithms. Experimental results indicate that our
technique is superior in both precision and efficiency to prior work and enables verification, for the first time, of several
concurrent algorithms running on Intel's �86 TSO and PSO memory models.

2. Overview

In this section we illustrate our approach on a running example. The goal of this section is to give some intuition about
and informal understanding of the work. Full formal details are provided in later sections.

To understand our approach, consider the concurrent program shown in Fig. 1. It consists of two threads that share the
integer variables X and Y (variables a and b are local to each thread). The figure also shows an assertion which holds once
both threads have completed their execution, namely that XþYZ2. Our objective is to verify that the program satisfies this
assertion under relaxed memory models such as Intel's �86 TSO and PSO.

2.1. Relaxed behaviors

In the example in Fig. 1, Thread 1 can execute the statements at labels 1 and 2 in the opposite order. Similarly, Thread
2 can execute the statements at labels 1 and 2 in the opposite order due to the nature of relaxed memory models such as
TSO. Relaxed models such as TSO allow program statements to be executed out of order, resulting in behaviors not possible
under sequential consistency. Under TSO, a store and a load (by the same thread) accessing different memory locations are
allowed to be reordered. Therefore, after both threads execute the statements at labels 1 and 2, one can end up in the state X

Fig. 1. Example program.

A. Dan et al. / Computer Languages, Systems & Structures 47 (2017) 62–76 63



Download English Version:

https://daneshyari.com/en/article/4949456

Download Persian Version:

https://daneshyari.com/article/4949456

Daneshyari.com

https://daneshyari.com/en/article/4949456
https://daneshyari.com/article/4949456
https://daneshyari.com

