
Inference of ranking functions for proving temporal properties
by abstract interpretation$

Caterina Urban a,b,n, Antoine Miné a,c

a École Normale Supérieure, Paris, France
b ETH Zürich, Zurich, Switzerland
c LIP6 – UPMC, Paris, France

a r t i c l e i n f o

Article history:
Received 20 May 2015
Received in revised form
17 September 2015
Accepted 15 October 2015
Available online 24 October 2015

Keywords:
Static analysis
Abstract interpretation
Liveness
Temporal properties
Ranking functions
Termination

a b s t r a c t

We present new static analysis methods for proving liveness properties of programs. In
particular, with reference to the hierarchy of temporal properties proposed by Manna and
Pnueli, we focus on guarantee (i.e., “something good occurs at least once”) and recurrence
(i.e., “something good occurs infinitely often”) temporal properties.

We generalize the abstract interpretation framework for termination presented by
Cousot and Cousot. Specifically, static analyses of guarantee and recurrence temporal
properties are systematically derived by abstraction of the program operational trace
semantics.

These methods automatically infer sufficient preconditions for the temporal properties
by reusing existing numerical abstract domains based on piecewise-defined ranking
functions. We augment these abstract domains with new abstract operators, including a
dual widening.

To illustrate the potential of the proposed methods, we have implemented a research
prototype static analyzer, for programs written in a C-like syntax, that yielded interesting
preliminary results.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Software verification addresses the problem of checking that programs satisfy certain properties. Lamport, in the late
1970s, suggested a classification of program properties into the classes of safety and liveness properties [1]. The class of
safety properties is informally characterized as the class of properties stating that “something bad never happens”, that is, a
program never reaches an unacceptable state. The class of liveness properties is informally characterized as the class of
properties stating that “something good eventually happens”, that is, a program eventually reaches a desirable state.

Manna and Pnueli, in the late 1980s, suggested a more fine grained classification of program properties into a hierarchy
[2], which distinguishes four basic classes making different claims about the frequency or occurrence of “something good”
mentioned in the informal characterizations proposed by Lamport:

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cl

Computer Languages, Systems & Structures

http://dx.doi.org/10.1016/j.cl.2015.10.001
1477-8424/& 2015 Elsevier Ltd. All rights reserved.

☆ Dedicated to the memory of Radhia Cousot.
n Corresponding author.
E-mail addresses: caterina.urban@inf.ethz.ch (C. Urban), antoine.mine@lip6.fr (A. Miné).

Computer Languages, Systems & Structures 47 (2017) 77–103

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2015.10.001
http://dx.doi.org/10.1016/j.cl.2015.10.001
http://dx.doi.org/10.1016/j.cl.2015.10.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.10.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.10.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.10.001&domain=pdf
mailto:caterina.urban@inf.ethz.ch
mailto:antoine.mine@lip6.fr
http://dx.doi.org/10.1016/j.cl.2015.10.001
http://dx.doi.org/10.1016/j.cl.2015.10.001


� safety properties: “something good always happens”, i.e., the program never reaches an unacceptable state (e.g., partial
correctness, mutual exclusion);

� guarantee properties: “something good happens at least once”, i.e., the program eventually reaches a desirable state (e.g.,
total correctness, termination);

� recurrence properties: “something good happens infinitely often”, i.e., the program reaches a desirable state infinitely often
(e.g., starvation freedom);

� persistence properties: “something good eventually always happens”, i.e., the program eventually reaches and stays in a
desirable state (e.g., stabilization).

This paper concerns the verification of programs by static analysis. We set our work in the framework of Abstract
Interpretation [3], a general theory of semantic approximation that provides a basis for various successful industrial-scale
tools (e.g., Astrée [4]). Abstract Interpretation has to a large extent been concerned with safety properties and has only
recently been extended to program termination [5], which is just a particular guarantee property.

In this paper, we generalize the framework proposed by Cousot and Cousot for termination [5] and we propose an
abstract interpretation framework for proving guarantee and recurrence temporal properties of programs. Moreover, we
present new static analysis methods for inferring sufficient preconditions for these temporal properties. Let us consider the
program SIMPLE in Fig. 1, where the program variables are interpreted in the set of mathematical integers. The first loop is
an infinite loop for the values of the variable x greater than or equal to zero: at each iteration the value of x is increased by
one. The second loop is an infinite loop for any value of the variable x: at each iteration, the value of x is increased by one or
negated when it becomes greater than ten. Given the guarantee property “x¼3 at least once”, where x¼3 is the desirable
state, our approach is able to automatically infer that the property is true if the initial value of x is smaller than or equal to
three. Given the recurrence property “x¼3 infinitely often”, our approach is able to automatically infer that the property is
true if the initial value of x is strictly negative (i.e., if the first loop is not entered).

Our approach follows the traditional method for proving liveness properties by means of a well-founded argument (i.e., a
function from the states of a program to a well-ordered set whose value decreases during program execution). More pre-
cisely, we build a well-founded argument for guarantee and recurrence properties in an incremental way: we start from the
desirable program states, where the function has value zero (and is undefined elsewhere); then, we add states to the
domain of the function, retracing the program backwards and counting the maximum number of performed program steps
as value of the function. Additionally, for recurrence properties, this process is iteratively repeated in order to construct an
argument that is also invariant with respect to program execution steps so that even after reaching a desirable state we
know that the execution will reach a desirable state again. We formalize these intuitions into sound and complete guarantee
and recurrence semantics that are systematically derived by abstract interpretation of the program operational trace
semantics.

In order to achieve effective static analyses, we further abstract these semantics. Specifically, we leverage existing
numerical abstract domains based on piecewise-defined ranking functions [6–8] by introducing new abstract operators,
including a dual widening. The piecewise-defined ranking functions are attached to the program control points and
represent an upper bound on the number of program execution steps before the program reaches a desirable state. They are
automatically inferred through backward analysis and yield sufficient preconditions for the guarantee and recurrence tem-
poral properties. We prove the soundness of the analysis, meaning that all program executions respecting these pre-
conditions indeed satisfy the temporal properties, while a program execution that does not respect these preconditions
might or might not satisfy the temporal properties.

To illustrate the potential of our approach, let us consider again the program SIMPLE in Fig. 1. Given the guarantee
property “x¼3 at least once”, the piecewise-defined ranking function inferred at program control point 1 is

λx:

�3xþ10 xo0
�2xþ6 0rx4xr3
undefined otherwise

8><
>:

which bounds the wait (from the program control point 1) for the desirable state x¼3 by �3xþ10 program execution steps
when xo0, and by �2xþ6 execution steps when 0rx4xr3. The analysis is inconclusive when 3ox. In this case, when
3ox, the guarantee property is never satisfied. Thus, the precondition xr3 induced by the domain of the ranking function
is the weakest precondition for “x¼3 at least once”. Given the recurrence property “x¼3 infinitely often”, the piecewise-
defined ranking function at program point 1 bounds the wait for the next occurrence of the desirable state x¼3 by �3xþ10

Fig. 1. Program SIMPLE.

C. Urban, A. Miné / Computer Languages, Systems & Structures 47 (2017) 77–10378



Download English Version:

https://daneshyari.com/en/article/4949457

Download Persian Version:

https://daneshyari.com/article/4949457

Daneshyari.com

https://daneshyari.com/en/article/4949457
https://daneshyari.com/article/4949457
https://daneshyari.com

