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a b s t r a c t

Consider a graph G = (V , E) without isolated edges and with maximum degree ∆. Given
a colouring c : E → {1, 2, . . . , k}, the weighted degree of a vertex v ∈ V is the sum of its
incident colours, i.e.,

∑
e∋vc(e). For any integer r ≥ 2, the least k admitting the existence

of such c attributing distinct weighted degrees to any two different vertices at distance
at most r in G is called the r-distant irregularity strength of G and denoted by sr (G). This
graph invariant provides a natural link between the well known 1–2–3 Conjecture and
irregularity strength of graphs. In this paper we apply the probabilistic method in order to
prove an upper bound sr (G) ≤ (4 + o(1))∆r−1 for graphs with minimum degree δ ≥ ln8∆,
improving thus far best upper bound sr (G) ≤ 6∆r−1.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let us consider a graph G = (V , E) and its not necessarily proper edge colouring c : E → {1, 2, . . . , k} with k least
positive integers. We say that such colouring c is irregular if it associates with every vertex v ∈ V a different sum of its
incident colours:

wc(v) :=

∑
u∈N(v)

c(uv), (1)

so calledweighted degree of v.We shall also denotewc(v) byw(v) in caseswhen the colouring c is unambiguous from context.
The least k admitting such irregular colouring c is called the irregularity strength of G and denoted by s(G), see [7]. Note that
this parameter is well defined for graphs without isolated edges and with at most one isolated vertex; for the remaining
ones we might e.g. set s(G) = ∞. Alternatively, s(G) might be regarded as the least k so that we may construct an irregular
multigraph, i.e. a multigraphwith pairwise distinct degrees of all vertices, of G bymultiplying its edges, each atmost k times.
This study thus originate from the basic fact that no graph G with more than one vertex is irregular itself, hence s(G) ≥ 2,
and related research on possible alternative definitions of irregularity in graph environment, see e.g. [6]. It is known that
s(G) ≤ n − 1, where n = |V |, for all graphs containing no isolated edges and at most one isolated vertex, except for the
graph K3, see [3,20]. This is a tight upper bound, as exemplified e.g. by the family of stars. A better upper bound is known
for graphs with minimum degree δ > 6, i.e., s(G) ≤ 6⌈ n

δ
⌉, see [15], and s(G) ≤ (4 + o(1)) n

δ
+ 4 for graphs with δ ≥ n0.5 ln n,

see [18]. It is however believed that these upper bounds can be improved to (in such a case optimal) s(G) ≤
n
δ

+ C for some
absolute constant C , see e.g. [11,15,18,23]. This has been explicitly conjectured in the case of d-regular graphs, see [11], for
which one can observe that on the other hand s(G) ≥

n
d +

d−1
d via straightforward counting argument, see e.g. [7]. Other

results concerning the concept of irregularity strength and in particular its value for specific graph classes can also be found
e.g. in [5,8–10,12,17,22], and many others.
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The problem described above gave rise to a variety of associated questions and concepts, nowadays making up an
intensively studied field of the graph theory. One of itsmost intriguing descendants is its local version,where one investigates
the least k for which there is a colouring c : E → {1, 2, . . . , k} of the edges of a graph G such that wc(u) ̸= wc(v) for every
pair of adjacent vertices u, v, so called neighbours in G. Denote this value by s1(G) (we shall comment on this notion below),
and note that such graph invariant is well defined for all graphs without isolated edges. Though initially no finite upper
bound was known for this parameter, Karoński, Łuczak and Thomason [16] posed a fascinating conjecture that s1(G) ≤ 3 for
all graphs without isolated edges. This is nowadays commonly referred to as 1–2–3 Conjecture in the literature, see e.g. [14].
The conjecture is still open, while thus far the following general upper bounds were subsequently proved: s1(G) ≤ 30 in [1],
s1(G) ≤ 16 in [2], s1(G) ≤ 13 in [25], and finally s1(G) ≤ 5 from [14].

In this paper we study a problem linking the two concepts above. Given any graph G = (V , E) and an integer r ≥ 1,
two distinct vertices at distance at most r in G, i.e. u, v ∈ V with 1 ≤ d(u, v) ≤ r , shall be called r-neighbours. For any
colouring c : E → {1, 2, . . . , k}, the weighted degree wc(v) (defined in (1)) shall also be referred to as the weight of v or
simply the sum at v. If w(u) = w(v) for distinct vertices u, v ∈ V , we say that they are in conflict, otherwise we call them
sum-distinguished or simply distinguished. The least k such that there is a colouring c : E → {1, 2, . . . , k} without a conflict
between any pair of r-neighbours in the graph G shall be called the r-distant irregularity strength of G and denoted by sr (G)
(observe that this notion is consistentwith the use of s1(G) with reference to 1–2–3 Conjecture above, while it is also justified
to set s∞(G) = s(G) in this context). Note that analogously as above, sr (G) is well defined iff G has no isolated edges. In [24]
the following upper bound was provided for this graph invariant.

Theorem 1. Let G be a graph without isolated edges, and with maximum degree ∆ ≥ 2, and let r ≥ 1 be an integer. Then,

sr (G) ≤ 6∆r−1.

See also [24] for a discussion justifying the fact that the general upper bound from the theorem above cannot be smaller
than ∆r−1. In this paper we essentially improve the inequality from Theorem 1 to sr (G) ≤ (4 + o(1))∆r−1, but for technical
reasons we had to exclude from our result graphs with small minimum degrees, i.e., smaller than a value given by a certain
poly-logarithmic function in ∆, see Theorem 5 below. Our approach shall be based on the probabilistic method, first applied
to design a special ordering of the vertices of a graph, and then to provide an enhancement of an algorithm whose different
variants were used e.g. in [14,15,18,24], developed along the specified order. In the next sectionwe recall several useful tools
of the probabilistic method. Then we formulate our main result, and provide its proof in Section 4. The last section contains
a few related comments.

2. Tools

We shall use a few tools of the probabilistic method listed in details below. In particular, the Lovász Local Lemma, see
e.g. [4], combined with the Chernoff Bound, see e.g. [13] (Th. 2.1, page 26) and Talagrand’s Inequality, see e.g. [19].

Theorem 2 (The Local Lemma). Let A1, A2, . . . , An be events in an arbitrary probability space. Suppose that each event Ai is
mutually independent of a set of all the other events Aj but at most D, and that Pr(Ai) ≤ p for all 1 ≤ i ≤ n. If

ep(D + 1) ≤ 1,

then Pr
(⋂n

i=1Ai
)

> 0.

Theorem 3 (Chernoff Bound). For any 0 ≤ t ≤ np,

Pr(BIN(n, p) > np + t) < e−
t2
3np and Pr(BIN(n, p) < np − t) < e−

t2
2np ≤ e−

t2
3np

where BIN(n, p) is the sum of n independent Bernoulli variables, each equal to 1 with probability p and 0 otherwise.

Theorem 4 (Talagrand’s Inequality). Let X be a non-negative random variable, not identically 0, which is determined by l
independent trials T1, . . . , Tl, and satisfying the following for some c, k > 0:

1. changing the outcome of any one trial can affect X by at most c, and
2. for any s, if X ≥ s then there is a set of at most ks trials whose outcomes certify that X ≥ s,

then for any 0 ≤ t ≤ E(X),

Pr
(
|X − E(X)| > t + 60c

√
kE(X)

)
≤ 4e

−
t2

8c2kE(X) .

Note that e.g. knowing only an upper bound E(X) ≤ h (instead of the exact value of E(X)) we may still use Talagrand’s
Inequality in order to upper-bound the probability that X is large. It is sufficient to apply Theorem 4 above to the variable
Y = X +h−E(X), with E(Y ) = h to obtain the following provided that the assumptions of Theorem 4 hold for X (and t ≤ h):

Pr(X > h + t + 60c
√
kh) ≤ Pr(Y > h + t + 60c

√
kh) ≤ 4e−

t2

8c2kh .
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