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a b s t r a c t

The Graph Motif problem was introduced in 2006 in the context of biological networks.
It consists of deciding whether or not a multiset of colors occurs in a connected subgraph
of a vertex-colored graph. Graph Motif has been mostly analyzed from the standpoint
of parameterized complexity. The main parameters which came into consideration were
the size of the multiset and the number of colors. In the many utilizations of Graph
Motif, however, the input graph originates from real-life applications and has structure.
Motivated by this prosaic observation, we systematically study its complexity relatively
to graph structural parameters. For a wide range of parameters, we give new or improved
FPT algorithms, or show that the problem remains intractable. For the FPT cases, we also
give some kernelization lower bounds as well as some ETH-based lower bounds on the
worst case running time. Interestingly, we establish that Graph Motif isW[1]-hard (while
in W[P]) for parameter max leaf number, which is, to the best of our knowledge, the first
problem to behave this way.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Graph Motif problem has received a lot of attention during the last decade. Informally, Graph Motif is defined as
follows: given a graph with arbitrary colors on the nodes and a multiset of colors called the motif, the goal is to decide if
there exists a subset of vertices of the graph such that (1) the subgraph induced by this subset is connected and (2) the colors
on the subset of vertices match the motif, i.e. each color appears the same number of times as in the motif. Originally, this
problem ismotivated by applications in biological network analysis [33]. However, it also proves useful in social or technical
networks [4] or in the context of mass spectrometry [8].

Studying biological networks allows a better characterization of species, by determining small recurring subnetworks,
often calledmotifs. Suchmotifs can correspond to a set of nodes realizing some function, whichmay have been evolutionary
preserved. Thus, it is crucial to determine these motifs to identify common elements between species and transfer the
biological knowledge. Graph Motif corresponds to topology-free queries and can be seen as a variant of a graph pattern
matching problem with the sole topological requirement of connectedness. Such queries were also studied extensively for
sequences during the last thirty years, andwith the increase of knowledge about biological networks, it is relevant to extend
these queries to networks [40].

✩ An extended abstract of this work appears in IPEC 2015.
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2. Preliminaries and previous work

For any two integers x < y, we set [x, y] := {x, x + 1, . . . , y − 1, y}, and for any positive integer x, [x] := [1, x]. If G
is a graph, we denote by V (G) its set of vertices and by E(G) its set of edges. If G = (V , E) is a graph and S ⊆ V , EG(S)
denotes the subset of edges of E having both endpoints in S. If G = (V , E) is a graph and S ⊆ V is a subset of vertices, G[S]
denotes the subgraph of G induced by S: (S, EG(S)). For a vertex v ∈ V , the set of neighbors of v in G is denoted by NG(v),
and NG(S) := (


v∈S NG(v)) \ S. We define NG[v] := NG(v) ∪ {v} and NG[S] := NG(S) ∪ S. In all the previous definitions,

we will lose the subscript G whenever the graph Gwe are referring to is either implicit or irrelevant. We say that a vertex v
dominates a set of vertices S if S ⊆ N[v]. A set of vertices R dominates another set of vertices S if S ⊆ N[R]. If G = (V , E) is a
graph and V ′

⊆ V , G − V ′ denotes the graph G[V \ V ′
]. A universal vertex v, in a graph G = (V , E), is such that NG[v] = V . A

matching of a graph is a set of mutually disjoint edges. In an explicitly bipartite graph G = (V1 ∪V2, E), we call a matching of
size min(|V1|, |V2|) a perfect matching. A cluster graph (or simply, cluster) is a disjoint union of cliques. A co-cluster graph (or,
co-cluster) is the complement graph of a cluster graph. If C is a class of graphs, the distance to C of a graph G is the minimum
number of vertices to remove from G to get a graph in C.

If f : A → B is a function and A′
⊆ A, f|A′ denotes the restriction of f to A′, that is f|A′ : A′

→ B such that
∀x ∈ A′, f|A′(x) := f (x). Similarly, if E is a set of edges on vertices of V and V ′

⊆ V , E|V ′ is the subset of edges of E having
both endpoints in V ′.
Multisets.Amultiset is a generalization of thenotion of setwhere each elementmay appearmore thanonce. Themultiplicityof
the element x in themultisetM , denoted bymM(x), is the number of occurrences of x inM . We adopt the natural convention
that mM(x) = 0 if x does not belong to M . The cardinality of a multiset M denoted by |M| is its number of elements with
their multiplicity: ΣxmM(x). If M and N are two multisets, M ∪ N is the multiset A such that ∀x,mA(x) = mM(x) + mN(x),
and M \ N is the multiset D such that ∀x,mD(x) = max(0,mM(x)− mN(x)). We write M ⊆ N if and only if M \ N = ∅ and
M ⊂ N if and only ifM ⊆ N and M ≠ N .

Example 1. Let M = {1, 2, 2, 4, 5, 5, 5} and N = {1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 5}. Then, |M| = 7, |N| = 12,M \ N =

∅,N \ M = {1, 1, 3, 3, 5}, andM ⊆ N .

Graph Motif. The problem is defined as follows:

Graph Motif

• Input: A triple (G, c,M), where G = (V , E) is a graph, c : V → C is a coloring of the vertices, and M is a multiset of
colors of C.
• Output: A subset R ⊆ V such that
(1) G[R] is connected and
(2) c(R) = M .

In the above definition, c(R) denotes the multiset of colors of vertices in R. We use that slight abuse of notation for
convenience. We will refer to condition (1) as the connectivity constraint and to condition (2) as themultiset constraint.
Parameterized complexity. A parameterized problem (I, k) is said fixed-parameter tractable (or in the class FPT) w.r.t. (with
respect to) parameter k if it can be solved in f (k) · |I|c time (in fpt-time), where f is any computable function and c is a
constant (see [20,38,16] for more details about fixed-parameter tractability). The parameterized complexity hierarchy is
composed of the classes FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP. The class XP is the set of problems solvable in time
|I|f (k), where f is a computable function.

A W[1]-hard problem is not fixed-parameter tractable (unless FPT = W[1]) and one can prove W[1]-hardness by means
of a parameterized reduction from aW[1]-hard problem. This is a mapping of an instance (I, k) of a problem A1 in g(k) · |I|O(1)
time (for any computable function g) into an instance (I ′, k′) for A2 such that (I, k) ∈ A1 ⇔ (I ′, k′) ∈ A2 and k′ 6 h(k) for
some function h.

A powerful technique to design parameterized algorithms is kernelization. In short, kernelization is a polynomial-time
self-reduction algorithm that takes an instance (I, k) of a parameterized problem P as input and computes an equivalent
instance (I ′, k′) of P such that |I ′| 6 h(k) for some computable function h and k′ 6 k. The instance (I ′, k′) is called a kernel in
this case. If the function h is polynomial, we say that (I ′, k′) is a polynomial kernel.

It is well known that a decidable problem is in FPT if and only if it has a kernel, but this equivalence yields super-
polynomial kernels (in general). To design efficient parameterized algorithms, a kernel of polynomial (or even linear) size
in k is important. However, some lower bounds on the size of the kernel can be shown under the assumption that the
polynomial hierarchy is a proper hierarchy. To show such results, we will use the cross-composition technique developed
by Bodlaender et al. [9].

Definition 2 (Polynomial Equivalence Relation [9]). An equivalence relation R onΣ∗ is said to be polynomial if the following
two conditions hold:

(i) There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y belong to the same equivalence class
in time (|x| + |y|)O(1).

(ii) For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into at most (maxx∈S |x|)O(1) classes.
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