
Discrete Applied Mathematics () –

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Solving all-pairs shortest path by single-source
computations: Theory and practice✩

Andrej Brodnik a,b, Marko Grgurovič a,∗

a Department of Information Science and Technology, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
b Faculty of Computer and Information Science, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia

a r t i c l e i n f o

Article history:
Received 19 November 2015
Received in revised form 31 January 2017
Accepted 20 March 2017
Available online xxxx

Keywords:
All pairs shortest path
Single source shortest path

a b s t r a c t

Given an arbitrary directed graph G = (V , E) with non-negative edge lengths, we present
an algorithm that computes all pairs shortest paths in time O(m∗n+m lg n+ nTψ (m∗, n)),
where m∗ is the number of different edges contained in shortest paths and Tψ (m∗, n)
is the running time of an algorithm ψ solving the single-source shortest path problem
(SSSP). This is a substantial improvement over a trivial n times application of ψ that runs
in O(nTψ (m, n)). In our algorithmwe useψ as a black box and hence any improvement on
ψ results also in improvement of our algorithm. A combination of our method, Johnson’s
reweighting technique and topological sorting results in an O(m∗n + m lg n) all-pairs
shortest path algorithm for directed acyclic graphs with arbitrary edge lengths. We also
point out a connection between the complexity of a certain sorting problem defined on
shortest paths and SSSP. Finally, we showhow to improve the performance of the proposed
algorithm in practice. We then empirically measure the running times of various all-
pairs shortest path algorithms on randomly generated graph instances and obtain very
promising results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) denote a directed graphwhere E is the set of edges and V is the set of vertices of the graph and let ℓ(·) be a
functionmapping each edge to its length.Without loss of generality,we assumeG is strongly connected. To simplify notation,
we define m = |E| and n = |V |. Furthermore, we define d(u, v) for two vertices u, v ∈ V as the length of the shortest path
from u to v. A classic problem in algorithmic graph theory is to find shortest paths. Two of the most common variants of
the problem are the single-source shortest path (SSSP) problem and the all-pairs shortest path problem (APSP). In the SSSP
variant, we are asked to find paths with the least total length from a fixed vertex s ∈ V to every other vertex in the graph.
Similarly, the APSP problem asks for the shortest path between every pair of vertices u, v ∈ V . A common simplification of
the problem constrains the edge length function to be non-negative, i.e. ℓ : E → R+, which we assume throughout the rest
of the paper, except where explicitly stated otherwise. Additionally, we define ∀(u, v) ∉ E : ℓ(u, v) = ∞.

It is obvious that the APSP problem can be solved by n calls to an SSSP algorithm. Let us denote the SSSP algorithm asψ .
We can quantify the asymptotic time bound of such an APSP algorithm as O(nTψ (m, n)) and the asymptotic space bound

✩ A preliminary version of this work has been published in the Proceedings of 23rd International Symposium on Algorithms and Computation
(ISAAC 2012).
∗ Corresponding author.

E-mail addresses: andrej.brodnik@upr.si (A. Brodnik), marko.grgurovic@famnit.upr.si (M. Grgurovič).

http://dx.doi.org/10.1016/j.dam.2017.03.008
0166-218X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2017.03.008
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:andrej.brodnik@upr.si
mailto:marko.grgurovic@famnit.upr.si
http://dx.doi.org/10.1016/j.dam.2017.03.008

2 A. Brodnik, M. Grgurovič / Discrete Applied Mathematics () –

as O(Sψ (m, n)), where Tψ (m, n) is the time required by algorithm ψ and Sψ (m, n) is the space requirement of the same
algorithm. We assume that the time and space bounds can be written as functions of m and n only, even though this is not
necessarily the case in more ‘‘exotic’’ algorithms that depend on other parameters of G. Note, that if we are required to store
the computed distancematrix, thenwewill need at leastΘ(n2) additional space. If we account for this, then the space bound
becomes O(Sψ (m, n)+ n2).

In this paper we are interested in the following problem: what is the best way to make use of an SSSP algorithm ψ
when solving APSP? There exists some prior work on a very similar subject in the form of an algorithm named the Hidden
Paths Algorithm [10]. The Hidden Paths Algorithm is essentially a modification of Dijkstra’s algorithm [3] to make it more
efficient when solving APSP. Solving the APSP problem by repeated calls to Dijkstra’s algorithm requires O(mn + n2 lg n)
time using Fibonacci heaps [5]. The Hidden Paths Algorithm then reduces the running time toO(m∗n+n2 lg n). The quantity
m∗ represents the number of edges (u, v) ∈ E such that (u, v) is included in at least one shortest path. In the Hidden Paths
Algorithm this is accomplished bymodifyingDijkstra’s algorithm, so that it essentially runs in parallel fromall vertex sources
in G, and then reusing the computations performed by other vertices. The idea is simple: we can delay the inclusion of an
edge (u, v) as a candidate for forming shortest paths until vertex u has found (u, v) to be the shortest path to v. However,
the speedup technique employed by the Hidden Paths Algorithm is only applicable to Dijkstra’s algorithm, since it explicitly
sorts the shortest path lists by path lengths, through the use of a priority queue. As a related algorithm, we also point out
that a different measure denoted as |UP|, related to the number of so-called uniform paths, has also been exploited to yield
faster algorithms [2], including an O(n2) average-case algorithm for random complete graphs [11].

In Sections 3 and 4 we show that there is a method for solving APSP which produces the shortest path lists of individual
vertices in sorted order according to the path lengths. The interesting part is that it can accomplish this without the use of
priority queues of any form, and requires only an SSSP algorithm to be provided. This avoidance of priority queues permits
us to state a time complexity relationship between a sorted variant of APSP and SSSP. Since it is very difficult to prove
meaningful lower bounds for SSSP, we believe this connection might prove useful.

As a direct application of our approach, we show that an algorithm with a similar time bound to the Hidden Paths
Algorithm can be obtained. Unlike the Hidden Paths Algorithm, the resulting method is general in that it works for any SSSP
algorithm, effectively providing a speed-up for arbitrary SSSP algorithms. The proposed method, given an SSSP algorithm
ψ , has an asymptotic worst-case running time of O(m∗n + m lg n + nTψ (m∗, n)) and space O(Sψ (m, n) + n2). We point
out that the m∗n term is dominated by the nTψ (m∗, n) term, but we feel that stating the complexity in this (redundant)
form makes the result clearer to the reader. For the case of ψ being Dijkstra’s algorithm, this is asymptotically equivalent
to the Hidden Paths Algorithm. However, since the algorithm ψ is arbitrary, we show that the combination of our method,
Johnson’s reweighting technique [9] and topological sorting gives an O(m∗n + m lg n) APSP algorithm for directed acyclic
graphs with arbitrary edge lengths.

In Section 5 we detail optimizations that can be used to speed up the proposed algorithm in practice. In Section 6 we
perform an experimental comparison between current algorithms for the all-pairs shortest path problem.

2. Preliminaries

As before, let G = (V , E) denote a directed graph where E is the set of edges and V is the set of vertices of the graph.
Throughout the paper and without loss of generality, we assume that we are not interested in paths beginning in v and
returning to v. We have previously defined the edge length function ℓ(·), which we now extend to the case of paths. Thus,
for a path π , we write ℓ(π) to denote its length, which corresponds to the sum of the lengths of its edges.

Similar to the way shortest paths are discovered in Dijkstra’s algorithm, we rank shortest paths in nondecreasing order
of their lengths. Thus, we call a path π the kth shortest path if it is at position k in the length-sorted shortest path list. The
list of paths is typically taken to be from a single source to variable target vertices. In contrast, we store paths from variable
sources to a single target. By reversing the edge directions we obtain the same lists, but it is conceptually simpler to consider
the modified case. Thus, the kth shortest path of vertex v actually represents the kth shortest incoming path into v. We will
now prove a theorem on the structure of shortest paths, which is the cornerstone of the proposed algorithm.

Definition 2.1 (Ordered Shortest Path List Pv). Let Pv = (π1, π2, . . . , πn−1) denote the shortest path list for the vertex v ∈ V .
Then, let Pv,k denote the kth element in the list Pv . The shortest path lists are ordered according to path lengths, thus we
have ∀i, j : 0 < i < j < n⇒ ℓ(πi) ≤ ℓ(πj).

Theorem 2.2. To determine Pv,k we only need to know the first k elements of each list Pu, such that (u, v) ∈ E.

Proof. We assume that we have found the first k shortest paths for all neighbors of v, and are now looking for the kth
shortest path into v, which we denote as πk. There are two possibilities: either πk is simply an edge (u, v), in which case we
already have the relevant information, or it is the concatenation of some path π and an edge (u, v). The next step is to show
that π is already contained in Pu,i where i ≤ k.

We will prove this by contradiction. Assume the contrary, that π is either not included in Pu, or is included at position
i > k. This would imply the existence of some path π ′ for which ℓ(π ′) ≤ ℓ(π) and which is contained in Pu at position
i ≤ k. Then we could simply take πk to be the concatenation of (u, v) and π ′, thereby obtaining a shorter path than the

Download English Version:

https://daneshyari.com/en/article/4949499

Download Persian Version:

https://daneshyari.com/article/4949499

Daneshyari.com

https://daneshyari.com/en/article/4949499
https://daneshyari.com/article/4949499
https://daneshyari.com

