ARTICLE IN PRESS

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Two more characterizations of König-Egerváry graphs

Adi Jarden a, Vadim E. Levit b,*, Eugen Mandrescu c

ARTICLE INFO

Article history: Received 2 November 2015 Received in revised form 5 May 2016 Accepted 10 May 2016 Available online xxxx

Keywords:
Maximum independent set
Core
Corona
Maximum matching
König-Egerváry graph
König-Egerváry collection

ABSTRACT

Let G be a simple graph with vertex set V(G). A set $S \subseteq V(G)$ is independent if no two vertices from S are adjacent. The graph G is known to be König–Egerváry if $\alpha(G) + \mu(G) = |V(G)|$, where $\alpha(G)$ denotes the size of a maximum independent set and $\mu(G)$ is the cardinality of a maximum matching. A nonempty collection Γ of maximum independent sets is $K\"{o}nig$ – $Egerv\acute{a}ry$ if $|U| \Gamma = 2\alpha(G)$ (Jarden et al., 2015).

In this paper, we prove that G is a König–Egerváry graph if and only if for every two maximum independent sets S_1 , S_2 of G, there is a matching from $V(G) - S_1 \cup S_2$ into $S_1 \cap S_2$. Moreover, the same is true, when instead of two sets S_1 and S_2 we consider an arbitrary König–Egerváry collection.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper G is a finite simple graph with vertex set V(G) and edge set E(G). If $X \subseteq V(G)$, then G[X] is the subgraph of G induced by X. By G - W we mean either the subgraph G[V(G) - W], if $W \subseteq V(G)$, or the subgraph obtained by deleting $W \subseteq E(G)$. In both cases, we use G - W, whenever $W = \{w\}$.

A set $S \subseteq V(G)$ is *independent* if no two vertices from S are adjacent, and by Ind(G) we mean the family of all the independent sets of G. An independent set of maximum size is a *maximum independent set* of G, and $\alpha(G) = max\{|S| : S \in Ind(G)\}$.

Let $\Omega(G)$ denote the family of all maximum independent sets,

$$core(G) = \bigcap \{S : S \in \Omega(G)\}[15], \text{ and }$$

 $corona(G) = \bigcup \{S : S \in \Omega(G)\}[2].$

A matching is a set M of pairwise non-incident edges of G. M matches A into B if every vertex of A is matched with some vertex of B by an edge belonging to M. A matching of maximum cardinality, denoted $\mu(G)$, is a maximum matching. For every matching M, we denote the set of all vertices that M saturates by V(M), and by M(x) we denote the vertex Y satisfying $XY \in M$.

It is well-known that $\alpha(G) + \mu(G) \le |V(G)|$ holds for every graph G. Recall that if $\alpha(G) + \mu(G) = |V(G)|$, then G is a König–Egerváry graph [7,26]. For example, each bipartite graph is a König–Egerváry graph as well. Various characterizations of König–Egerváry graphs can be found in [1,6,7,9,12–14,16–18,20,21,24–26], and some generalizations appear in [3,22].

E-mail addresses: jardena@ariel.ac.il (A. Jarden), levitv@ariel.ac.il (V.E. Levit), eugen_m@hit.ac.il (E. Mandrescu).

http://dx.doi.org/10.1016/j.dam.2016.05.012

0166-218X/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: A. Jarden, et al., Two more characterizations of König–Egerváry graphs, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam.2016.05.012

^a Department of Mathematics, Ariel University, Israel

^b Department of Computer Science, Ariel University, Israel

^c Department of Computer Science, Holon Institute of Technology, Israel

st Corresponding author.

2

A set $A \subseteq V(G)$ is a *clique* in G if A is independent in \overline{G} , and $\omega(G) = \alpha(\overline{G})$, where \overline{G} denotes the complement of G.

Lemma 1.1 (Clique Collection Lemma [8]). If Λ is a nonempty collection of maximum cliques in G, then

$$\left|\bigcap \Lambda\right| \geq 2 \cdot \omega(G) - \left|\bigcup \Lambda\right|.$$

Some recent applications of the Clique Collection Lemma may be found in [4,5,11,23]. In [19] we proved that this lemma is a numerical consequence of the following.

Lemma 1.2 (Matching Lemma [19]). If $A \in \text{Ind}(G)$, $\Gamma \subseteq \Omega(G)$, and $|\Gamma| \ge 1$, then there exists a matching from $A - \bigcap \Gamma$ into $|\Gamma| = A$.

Since every maximum clique of G is a maximum independent set of \overline{G} , the Clique Collection Lemma is equivalent to the fact that the inequality

$$\left|\bigcup \Gamma\right| + \left|\bigcap \Gamma\right| \ge 2\alpha(G)$$

holds for every nonempty family $\Gamma\subseteq\Omega$ (G). The extremal case of this inequality brings about the following definition, which allows us to formulate the main findings of this paper. A nonempty family $\Gamma\subseteq\Omega$ (G) is a König–Egerváry collection if

$$\left|\bigcup \Gamma\right| + \left|\bigcap \Gamma\right| = 2\alpha(G) [10].$$

Clearly, each $\Gamma \subseteq \Omega$ (*G*) with $|\Gamma| \in \{1, 2\}$ is a König–Egerváry collection.

Theorem 1.3 ([9,10]). If G is a König–Egerváry graph, then every non-empty collection of maximum independent sets is König–Egerváry.

In particular, taking $\Gamma = \Omega$ (G) in Theorem 1.3, one can obtain the following.

Corollary 1.4 ([19]). If G is a König–Egerváry graph, then Ω (G) is a König–Egerváry collection.

In this paper, we provide two new characterizations of König–Egerváry graphs. One of them is a kind of converse of Corollary 1.4. The other one illustrates the same phenomenon as emphasized in the following.

Theorem 1.5 ([18]). For a graph G, the following properties are equivalent:

- (i) *G* is a König–Egerváry graph;
- (ii) for every $S \in \Omega(G)$, each maximum matching of G matches V(G) S into S;
- (iii) there exists $S \in \Omega(G)$ such that each maximum matching of G matches V(G) S into S.

Namely, it is enough to claim something about one maximum independent set in order to be sure that the same is true for all maximum independent sets.

2. Results

Let us consider the graph G from Fig. 1, and $\Gamma = \{S_1, S_2, S_3\} \subset \Omega(G)$, where $S_1 = \{a, b, d, u\}$, $S_2 = \{a, b, d, y\}$ and $S_3 = \{a, b, x, v\}$. The subgraph $G \bigcup \Gamma$ is not a König-Egerváry graph, and no perfect matching exists in $G \bigcup \Gamma \cap \Gamma$. Notice that Γ is not a König-Egerváry collection, since $|\bigcup \Gamma| + |\bigcap \Gamma| > 2\alpha(G)$.

Theorem 2.1. If Γ is a König–Egerváry collection of a graph G, then

- (i) there is a perfect matching in $G[\bigcup \Gamma \bigcap \Gamma]$;
- (ii) $|\bigcup \Gamma| |\bigcap \Gamma| = 2\mu (G[\bigcup \Gamma]);$
- (iii) $\alpha(G[\bigcup \Gamma]) = \alpha(G);$
- (iv) $G[[] \Gamma]$ is a König–Egerváry graph.

Please cite this article in press as: A. Jarden, et al., Two more characterizations of König-Egerváry graphs, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam.2016.05.012

Download English Version:

https://daneshyari.com/en/article/4949504

Download Persian Version:

https://daneshyari.com/article/4949504

<u>Daneshyari.com</u>