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a b s t r a c t

In the Vertex Planarization problem one asks to delete the minimum possible number of
vertices from an input graph to obtain a planar graph. The parameterized complexity of this
problem, parameterized by the solution size (the number of deleted vertices) has recently
attracted significant attention. The state-of-the-art algorithm of Jansen et al. (2014) runs
in time 2O(k log k)

· n on an n-vertex graph with a solution of size k. It remains open if one
can obtain a single-exponential dependency on k in the running time bound.

One of the core technical contributions of the work of Jansen, Lokshtanov, and Saurabh
is an algorithm that solves aweighted variant ofVertex Planarization in time 2O(w logw)

·n
on graphs of treewidth w. In this short note we prove that the running time of this routine
is tight under the Exponential Time Hypothesis, even in unweighted graphs and when pa-
rameterizing by treedepth. Consequently, it is unlikely that a potential single-exponential
algorithm for Vertex Planarization parameterized by the solution size can be obtained by
merely improving upon the aforementioned bounded treewidth subroutine.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In theVertex Planarizationproblem, given an undirected graphG and an integer k, our goal is to delete atmost k vertices
from the graph G to obtain a planar graph. If (G, k) is a YES-instance to Vertex Planarization, then we say that G is a k-apex
graph. Since many algorithms for planar graphs can be easily generalized to near-planar graphs – k-apex graphs for small
values of k – this motivates us to look for efficient algorithms to recognize k-apex graphs. In other words, we would like to
solve Vertex Planarization for small values of k.

By a classical result of Lewis and Yannakakis [8], Vertex Planarization is NP-hard when k is part of the input. Since one
can check if a given graph is planar in linear time [4], Vertex Planarization can be trivially solved in time O(nk+1), where
n = |V (G)|, that is, in polynomial time for every fixed value of k. However, such an algorithm is impractical even for small
values of k; a question for a faster algorithm brings us to the realms of parameterized complexity.

In parameterized complexity, every problem comes with a parameter, being an additional complexity measure of input
instances. The central notion is a fixed-parameter algorithm: an algorithm that solves an instance xwith parameter k in time
f (k)|x|O(1) for some computable function f . Such a running time bound,while still super-polynomial (the function f is usually
exponential), is considered significantly better than say O(|x|k), as it promises much faster algorithms for moderate values
of k and large instances. We refer to recent textbooks [1,2] for a broader introduction to parameterized complexity.

Due to the aforementioned motivation, it is natural to consider the solution size k as a parameter for Vertex Planariza-
tion, and ask for a fixed-parameter algorithm. Since, for a fixed value of k, the class of all k-apex graphs is closed under
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takingminors, the graphminor theory of Robertson and Seymour immediately yields a fixed-parameter algorithm, but with
enormous dependency on the parameter in the running time bound.1 The quest for an explicit and faster fixed-parameter
algorithm for Vertex Planarization has attracted significant attention in the parameterized complexity community in the
recent years. First, Marx and Schlotter [12] obtained a relatively simple algorithm, with doubly-exponential dependency
on the parameter and n2 dependency on the input size in the running time bound. Later, Kawarabayashi [7] obtained a
fixed-parameter algorithm with improved linear dependency on the input size, at the cost of worse dependency on the
parameter. Finally, Jansen, Lokshtanov, and Saurabh [6] developed an algorithm with running time bound 2O(k log k)

· n, im-
proving upon all previous results.

As noted in [6], a simple reduction shows that Vertex Planarization cannot be solved in time 2o(k)
· nO(1) unless the

Exponential Time Hypothesis fails.

Conjecture 1 (Exponential Time Hypothesis [5]). Let s3 be the infimum over all reals δ > 0 for which there exists an algorithm
checking satisfiability of 3-CNF formulae in time O(2δn), where n is the number of variables of the input formula. Then s3 > 0.

Informally speaking, the Exponential TimeHypothesis (ETH) [5] asserts that the satisfiability of 3-CNF formulae cannot be
verified in time subexponential in the number of variables. In the recent years, a number of tight bounds for fixed-parameter
algorithms have been obtained using ETH or the closely related Strong ETH; we refer to [9,11] for an overview. In this light,
it is natural to ask for tight bounds for fixed-parameter algorithms for Vertex Planarization. In particular, [6] asks for a
single-exponential (i.e., with running time bound 2O(k)nO(1)) algorithm.

The core subroutine of the algorithm of Jansen, Lokshtanov, and Saurabh, is an algorithm that solves Vertex Planariza-
tion in time 2O(w logw)

· n on graphs of treewidth w. A direct way to obtain a single-exponential algorithm for Vertex Pla-
narization parameterized by the solution size would be to improve the running time of this bounded treewidth subroutine
to 2O(w)

· nO(1). In this short note we show that such an improvement is unlikely, as it would violate the Exponential Time
Hypothesis.

Theorem 2. Unless the Exponential Time Hypothesis fails, there does not exist an algorithm that solves Vertex Planarization
on n-vertex graphs of treewidth at most w in time 2o(w logw)nO(1).

In fact, our lower bound holds even for a more restrictive parameter of treedepth, instead of treewidth.
While Theorem 2 does not exclude the possibility of a 2O(k)nO(1)-time algorithm for Vertex Planarization, it shows that

to obtain such a running time one needs to circumvent the usage of bounded-treewidth subroutine on graphs for which
only an O(k) bound on the treewidth is available, as in the algorithm of Jansen, Lokshtanov, and Saurabh.

The remainder of this paper is devoted to the proof of Theorem 2.

2. Lower bound

We base our reduction on the framework for proving superexponential lower bounds introduced by Lokshtanov, Marx,
and Saurabh [10]. For an integer k, by [k] we denote the set {1, 2, . . . , k}. Consequently, [k]× [k] is a k× k table of elements
with rows being subsets of the form {i} × [k], and columns being subsets of the form [k] × {i}. We start from the following
auxiliary problem.

k × k Permutation Clique Parameter: k
Input: An integer k and a graph Gwith vertex set [k] × [k].
Question: Is there a k-clique in Gwith exactly one element from each row and exactly one element from each column?

As proven in [10], an 2o(k log k)-time algorithm for k×k Permutation Cliquewould violate ETH. Hence, to prove Theorem2,
it suffices to prove the following.

Lemma 3. There exists a polynomial time algorithm that, given an instance (G, k) of k × k Permutation Clique, outputs an
equivalent instance (H, ℓ) of Vertex Planarization where the treedepth of the graph H is bounded by O(k).

That is, as announced in the introduction, we in fact prove a stronger variant of Theorem 2, refuting an existence of a
2o(w logw)nO(1)-time algorithm for Vertex Planarization parameterized by the treedepth of the input graph. Recall that the
treedepth of a graph G, denoted td(G), is never smaller than the treewidth of G, and satisfies the following recursive formula.

Lemma 4 ([13]). The treedepth of an empty graph is 0, and the treedepth of a one-vertex graph equals 1. The treedepth of a
disconnected graph G equals the maximum of the treedepth of the connected components of G. The treedepth of a connected
graph G is equal to

td(G) = 1 + min
v∈V (G)

td(G − {v}).

1 Formally, this algorithm is non-uniform, that is, it requires an external advice depending on the parameter only. However, we can obtain a uniform
algorithm using the techniques of Fellows and Langston [3].
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