Regular coronoids and 4-tilings

Aleksander Vesel
Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia

A R TICLE INFO

Article history:

Received 30 November 2015
Received in revised form 26 April 2016
Accepted 29 July 2016
Available online xxxx

Keywords:

Elementary benzenoid graph
Regular coronoid
4-tiling
Decomposition

Abstract

A benzenoid is a finite connected plane graph with no cut vertices in which every interior region is bounded by a regular hexagon of side length one. A coronoid G is a connected subgraph of a benzenoid such that every edge lies in a hexagon of G and G contains at least one non-hexagon interior face, which should have a size of at least two hexagons. A polyhex is either a benzenoid or a coronoid. A coronoid is said to be regular if it can be generated from a single hexagon by a series of specific additions of hexagons. The vertices of the inner dual $I(G)$ of a polyhex G are the centers of all hexagons of G, two vertices being adjacent if and only if the corresponding hexagons share an edge in G. The graph $I_{S}(G)$ is obtained from $I(G)$ by removing a set of internal edges S. A polyhex G admits a 4-tiling, if every triple of pairwise adjacent hexagons of G belongs to a 4 -cycle face of $I_{S}(G)$. We show that a coronoid G admits a 4 -tiling if and only if G is regular. This fact enables us to prove that a coronoid G is regular if and only if G can be generated from a single hexagon by a series of normal additions plus corona condensations of mode A_{2}. This result confirms Conjecture 6 stated in [9].

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

A benzenoid system or a hexagonal system or simply a benzenoid is a finite connected plane graph with no cut vertices in which every interior region is bounded by a regular hexagon of a side length one. A benzenoid graph G is catacondensed if any triple of hexagons of G has empty intersection, otherwise it is pericondensed.

A coronoid G is a connected subgraph of a hexagonal system such that every edge lies in a hexagon of G and G contains at least one non-hexagon interior face (called corona hole), which should have a size of at least two hexagons. A coronoid is said to be single if it contains exactly one hole. A polyhex is either a benzenoid or a coronoid.

In general, coronoids can be regarded as benzenoids with holes. Since benzenoids and coronoids have counterparts in what are called benzenoid and coronoid hydrocarbons, the studies of such systems are of significant chemical relevance [1,2].

The paper is organized as follows. In the sequel of this section we give basic definitions and concepts needed in this paper. In Section 2, the main result of this paper is presented: we show that a coronoid G admits a 4 -tiling if and only if G is regular. We use this result in the last section of the paper presenting the theorem which shows that a single coronoid is regular if and only if it can be generated from a single hexagon by a series of normal additions plus only one corona condensation of mode A_{2}. As a corollary to this result, we show that a coronoid G is regular if and only if G can be generated from a single hexagon by a series of normal additions plus corona condensations of mode A_{2}. This corollary confirms Conjecture 6 stated in [9].

A matching of a graph G is a set of pairwise independent edges. If a matching covers all the vertices of G, then it is called perfect. In the chemical graph theory, perfect matchings are called Kekulé structures. For benzenoids or coronoids, Kekulean

[^0]systems are those which possess a Kekulé structure. A Kekulean system is called normal if every edge is contained in a Kekulé structure; essentially disconnected otherwise. A normal benzenoid is also called elementary.

Let M be a perfect matching of graph G. A cycle C is of G is M-alternating if edges of C appear alternately in and off the M.
A graph G is called bipartite if its vertex set can be divided in two disjoint sets V_{1} and V_{2} such that $V_{1} \cup V_{2}=V(G)$ and no two vertices from the same set are joined by an edge. If $u \in V_{1}$ and $v \in V_{2}$, then we say that u and v are of different colors. Every benzenoid graph G is clearly bipartite. A bipartite graph G is called elementary if G is connected and every edge belongs to a perfect matching of G.

The periphery of a polyhex consists of the boundaries of all non-hexagon faces of G, i.e., the boundary of the infinite face of G and the boundaries of corona holes of G. The boundary of the infinite face of G is called the boundary of G.

Let f denote a face of a plane elementary bipartite graph G such that the peripheries of G and f have a nonempty intersection. Let then $G-f$ denote the resultant subgraph of G by removing the edges and internal vertices of paths that the peripheries of G and f have in common.

A hexagon h of a polyhex G is called a pendant hexagon if a common path of the peripheries of h and G is a path of length five.

A hexagon h of a polyhex G is peripheral if the peripheries of G and h have a nonempty intersection and internal otherwise.
Let h be a peripheral hexagon of an elementary benzenoid graph G. If $G-h$ is elementary, then we call h a reducible hexagon of G. It is well known that an elementary benzenoid graph admits at least two reducible hexagons [7,10]. The sequence of hexagons $h_{1}, h_{2}, h_{3}, \ldots, h_{r}$ is called reducible if h_{i} is a reducible hexagon of G_{i} such that $G_{r}=G, G_{i-1}=G_{i}-h_{i}, i=$ $r, r-1, \ldots, 2$ and $h_{1}=G_{1}$.

The sequence of reducible hexagons of elementary benzenoid graphs has another explanation with respect to a broader class of elementary bipartite graphs. Let x be an edge. Join its end vertices by a path P_{1} of odd length (first ear). Then proceed inductively to build a sequence of bipartite graphs as follows: if $G_{r-1}=x+P_{1}+P_{2}+\cdots+P_{r-1}$ has already been constructed, add the r th ear P_{r} (of odd length) by joining any two vertices of different colors in G_{r-1} such that P_{r} has no internal vertices in common with G_{r-1}. The decomposition $G_{r}=x+P_{1}+P_{2}+\cdots+P_{r}$ is called an (bipartite) ear decomposition of G_{r}.

A bipartite graph is elementary if and only if it has an (bipartite) ear decomposition [3,4].
Zhang and Zhang [10] narrowed the concept of an ear decomposition for plane elementary bipartite graphs as follows. An ear decomposition $\left(G_{1}, G_{2}, \ldots, G_{r}(=G)\right.$) (equivalently, $\left.G=x+P_{1}+P_{2}+\cdots+P_{r}\right)$ of a plane elementary bipartite graph G is called a reducible face decomposition (RFD) if G_{1} is the boundary of an interior face of G and the i th ear P_{i} lies in the exterior of G_{i-1} such that P_{i} and a part of the periphery of G_{i-1} surround an interior face of G for all $2 \leq i \leq r$.

For a reducible face decomposition $G=x+P_{1}+\cdots+P_{r}$, every P_{i} and a path with odd length on the boundary of G_{i-1} surround an interior face s_{i}. Hence a RFD of G is also associated with a sequence s_{1}, \ldots, s_{r} of all the interior faces of G such that $G_{i-1}=G_{i}-s_{i}$. We say that s_{i} is a reducible face of G_{i}.

Theorem 1 ([10]). Let G be a plane bipartite graph other than K_{2}. Then G is elementary if and only if G has a reducible face decomposition starting with the boundary of any interior face of G.

Theorem 2 ([10]). Let G be a plane elementary bipartite graph with at least three finite faces. Then G has at least two reducible faces.

If G is an elementary benzenoid graph, then an ear P_{i} of a reducible face decomposition $\left(G_{1}, G_{2}, \ldots, G_{r}(=G)\right)$ together with a part on the perimeter of the infinite face forms a new hexagon, say h_{i}, of G_{i}. Note that P_{i} is of length five, three or one. In other words, h_{i} admits one, three, or five adjacent hexagons in G_{i}; therefore we say that we obtain G_{i} from G_{i-1} such that the added hexagon acquires the mode L_{1}, L_{3} or L_{5}, respectively (see Fig. 1). If an added hexagon acquires one of these modes, then we also speak about a normal addition.

Theorems 1 and 2 together with the above discussion yield the following result.
Theorem 3. Any normal benzenoid with $r+1$ hexagons can be generated from a normal benzenoid with r hexagons by a normal addition of one hexagon.

In order to construct normal coronoids, the situation is little more involved. Beside normal additions, four modes of corona condensation are needed: L_{2}, L_{4}, A_{2} and A_{3} (see Fig. 1). Normal coronoids are divided into two types: regular and half essentially disconnected. A coronoid is said to be regular if it can be generated from a single hexagon by a series of normal additions plus corona condensations of modes L_{2} or A_{2} and non-regular otherwise. Note that every regular coronoid is also normal. Normal coronoids that are not regular are called half essentially disconnected. A necessary and sufficient condition for a coronoid to be regular is given in [5].

Let G be a polyhex. We will say that G is regular if G is a regular coronoid or G is an elementary benzenoid graph.
Let G be a plane elementary bipartite graph. Two faces of G are said to be disjoint if their boundaries do not intersect; adjacent otherwise. Let F be a non-empty set of specified faces of G. The faces in F are called forbidden if faces in F are pairwise disjoint. The other faces of G are called allowed faces.

Zhang proposed an analog to the RFD for a 2-connected plane bipartite graph with forbidden faces G where the sequence of graphs which results in G is build by adding allowed faces of G. The addition of an allowed face in this process is called the regular addition (see [9] for the details). If a plane elementary bipartite graph G with forbidden faces can be generated from

Please cite this article in press as: A. Vesel, Regular coronoids and 4-tilings, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam. 2016.07 .022

https://daneshyari.com/en/article/4949509

Download Persian Version
https://daneshyari.com/article/4949509

Daneshyari.com

[^0]: E-mail address: vesel@uni-mb.si.
 http://dx.doi.org/10.1016/j.dam.2016.07.022
 0166-218X/© 2016 Elsevier B.V. All rights reserved.

