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a  b  s  t r  a  c  t

In  this  paper,  a novel  region-based  fuzzy  active  contour  model  with  kernel  metric  is proposed  for a
robust  and  stable  image  segmentation.  This  model  can  detect  the boundaries  precisely  and  work  well
with  images  in the  presence  of  noise,  outliers  and  low  contrast.  It  segments  an  image  into  two  regions
–  the  object  and the background  by the minimization  of a  predefined  energy  function.  Due  to  the  kernel
metric  incorporated  in the  energy  and the  fuzziness  of  the  energy,  the active  contour  evolves  very stably
without  the  reinitialization  for the  level set  function  during  the  evolution.  Here the  fuzziness  provides
the  model  with  a strong  ability  to reject  local  minima  and  the  kernel  metric  is employed  to construct  a
nonlinear  version  of energy  function  based  on  a  level  set  framework.  This  new  fuzzy  and  nonlinear  version
of energy  function  makes  the updating  of  region  centers  more  robust  against  the  noise  and  outliers  in
an image.  Theoretical  analysis  and experimental  results  show  that the  proposed  model  achieves  a  much
better  balance  between  accuracy  and  efficiency  compared  with  other  active  contour  models.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Image segmentation has always been a fundamental and impor-
tant task in computer vision and machine learning. Many methods
for image segmentation have been proposed such as thresholding
[1], clustering [2], edge detection and so on. However, due to the
presence of noise, outliers, low contrast and imaging artifacts in
images, robust and stable image segmentation is still a challeng-
ing problem. Among these methods, a well-established class of
methods are active contour models (ACMs).

The ACM has two major advantages over classical methods men-
tioned above. It can achieve better accuracy of segmentation [3]
and can be easily formulated as a minimization of an energy func-
tion which allows the incorporation of different and useful image
information [4–6].

The ACM is early known as a snake model proposed by Kass et al.
[7]. With the development of active contour methodology, differ-
ent variations of active contour models have been proposed for
image segmentation. According to the difference of forces driving
the evolution, existing active contour models can be roughly put
into two categories: edge-based models [3,8–10] and region-based
models [11–14]. Image gradient information is usually employed
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in edged-based models to guide the contour to the location of
object. Therefore, noise or weak boundaries in an image will make
it difficult for edge-based models to perform a successful image
segmentation. Region-based models usually use the region-based
information, such as intensity, color or texture, to guide the motion
of contour. And compared with edge-based models, region-based
models are less sensitive to the noise, weak boundaries and the ini-
tial location of the contour. One of the most famous and widely used
region-based models is Chan–Vese (CV) mode [11] which is based
on Mumford–Shah functional [15] and proposed by T.F. Chan and L.
Vese. This model uses the global intensity difference between the
original image and its approximation image to guide the contour.
The approximation image in CV model is constructed under the
assumption that the intensities of the original image are piecewise
constant. And this model is very successful to detect the objects of
which the boundaries are not necessarily defined by gradient. How-
ever, the sign distance function [16,17] used as the initial LSF in CV
model could be seriously degraded during the evolution. Usually a
procedure called reinitialization of the LSF is applied periodically
to preserve the distance information of the LSF and maintain the
stability of evolution. The introducing of this procedure not only
causes the problem of how and when to perform the procedure
[18] but also introduces a lot of computations and some numerical
errors. In addition, the CV model generally does not work well for
images with low contrast, intensity inhomogeneity. This also lim-
its the application of CV model. To get rid of this reinitialization
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procedure, Li et al. [9] proposed a distance regularized term to
encourage the LSF to preserve the distance information during the
evolution. And to deal with the problem of intensity inhomogeneity
in image segmentation, the global fitting energy in CV model is
replaced by the local binary fitting (LBF) energy [13,12]. In addition
the distance regularized term is further improved by Li [10]. The
energy function in LBF model is constructed with a kernel function
and therefore, this model allows the extraction of local intensity
information on different scales. Due to its good segmentation per-
formance, LBF model has attracted extensive attentions. However
the scale parameter in the kernel function is not self-adaptive and
it is sensitive to set this parameter in some cases. Besides, there
are four convolution computations in each iteration which greatly
increases the computational complexity of this model.

However, the CV based ACMs trap into local optima easily [19].
An appropriate way to reject local optimal is to construct a bi-
convex objective function by introducing fuzzy sets [20]. Fuzzy
sets which have been widely used in image segmentation and data
clustering is first introduced to ACMs by S. Krinidis and V. Chatzis
[21]. Combining the fuzzy sets and active contour methodology,
the fuzzy energy-based active contour (FEBAC) model proposed in
[21] has a capacity of rejecting local minima. Although this model
is formulated with a pseudo-level set function, the active contour is
represented by the 0.5 level set of LSF which also called fuzzy mem-
bership function here. And instead of traditional methods solving
Euler–Lagrange equation, a direct method based on a fast optimiza-
tion algorithm proposed by B. Song and T. Chan [22] is applied
to minimize the fuzzy energy function. The convergence of this
model can be achieved after very few iterations and the compu-
tational speed is very fast. Meanwhile, this model does not need
the reinitialization procedure and the distance regularized term is
not incorporated in energy function. However, for images without
high contrast, this model may  result in a not good balance between
stability and efficiency. With this direct minimization method, the
evolution of the contour is not stable in some cases where many
regional pixels in the background are intensity similar with these
pixels in the foreground. This causes that the updating of the LSF
could be easily deceived by intensity information and many pix-
els could be wrongly labeled after very few iterations. Besides, the
updating of average prototypes is sensitive to noise and outliers in
this model.

To deal with these problems mentioned above, our goal in this
paper is designing a new active contour model for a stable, effec-
tive and robust image segmentation. Meanwhile, this new active
contour model should achieve a much better balance between effi-
ciency and stability. Besides, image segmentation based on this
model should be more robust to noise and outliers in images.
Based on the FEBAC model, we propose a novel region-based fuzzy
active contour with kernel metric for image segmentation. Kernel
methods [23,24] have attracted an enormous amount of attention
in machine learning. In this paper, the motivation of introducing
kernel metric is providing a robust updating of region prototypes
against noise and outliers. The fuzzy sets incorporated in energy
formulation are providing the model with a strong ability to reject
local minima. Specially, the kernel metric is employed to replace
the Euclidean distance with non-Euclidean distance and therefore,
a nonlinear version of energy function is constructed. Due to the
non-linearity introduced by kernel metric, this new energy function
cannot be minimized by the direct method used in FEBAC model
and traditional methods exploiting Euler–Lagrange equations are
used to minimize the proposed energy function. However, the non-
linear distance metric used in this model and the fuzziness of the
energy function result in a stable updating of the fuzzy membership
function. Therefore, the reinitialization procedure is not necessary
any more and the segmentation results are more accurate. In addi-
tion, the kernel metric is parameter free. The main contributions

of our paper: we  propose a model which incorporates kernel met-
ric and fuzzy sets for image segmentation, the updating of region
prototypes and the evolution of contour are more robust against
outliers and noise, and no more parameters introduced needs to be
adjusted artificially.

The rest of this paper is organized as follows. Section 2 gives
a brief review on related background. Section 3 describes the
proposed active contour model in details. Section 4 presents the
experimental results based on real images and Section 5 draws the
conclusions.

2. Previous work

2.1. Chan–Vese model

The Chan–Vese model is formulated under the minimization of
an energy function defined by the Mumford–Shah model which
is known for its robustness against noise. The basic idea of
Mumford–Shah model is to find an image IA to approximate the
original image I0. Let us define C as an edge set which segments
the original image into non-overlapping sub-regions and � as the
image domain. Then the energy function in Mumford–Shah model
[15] can be expressed by (1)

FMS (I, C) =
∫

�

(I0 (x) − IA (x))2dx +
∫

�\C

|�IA (x) |2dx + � · Length (C) (1)

where ∇ is the gradient operator. The first term in the right side of
(1) is the mean data square term and the second one is a smooth-
ing term used to extract smooth regions. The third one forces the
edge set C to be regularized. A special case arises when inten-
sities in the approximation image I are piecewise constant. This
case is called the cartoon limit in which the second term satisfies∫

�\C
|�I (x) |2dx = 0. Particularly, in the case of two phase segmen-

tation, the image domain � can be divided into two sub regions:
inside (C) and outside (C). Here we use two constants c1 and c2 to
represent the intensity averages of I0 inside C and outside C. And
therefore, the energy function in CV model [11] is defined by (2).

FCV (c1, c2, C) = � · Length (C) + �1

∫
inside(C)

∣∣I0 (x) − c1

∣∣2dx

+ �2

∫
outside(C)

∣∣I0 (x) − c2

∣∣2dx (2)

Here �1 and �2 are fixed parameters and usually both set to 1.
To minimize the energy function (2),  the level set framework is
introduced. And the evolving C is represented as the zero level set
of the LSF � such as we have following definitions expressed by (3).⎧⎨
⎩

C =
{

x ∈ � : � (x) = 0
}

inside (C) =
{

x ∈ � : � (x) > 0
}

outside (C) =
{

x ∈ � : � (x) < 0
} (3)

Thus, the energy function (2) can be further expressed by (4).

FCV (c1, c2, C) = � ·
∫

�

ı (� (x))
∣∣∇� (x)

∣∣dx

+ �1

∫
�

∣∣I0 (x) − c1

∣∣2H (� (x)) dx

+ �2

∫
�

∣∣I0 (x) − c2

∣∣2 (1 − H (� (x))) dx  (4)
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