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a b s t r a c t

Convex geometries form a subclass of closure systemswith unique criticals, orUC-systems.
We show that the F-basis introduced in Adaricheva and Nation (2014) for UC-systems,
becomes optimum in convex geometries, in two essential parts of the basis: right sides
(conclusions) of binary implications and left sides (premises) of non-binary ones. The right
sides of non-binary implications can also be optimized, when the convex geometry either
satisfies the Carousel property, or does not have D-cycles. The latter generalizes a result of
P.L. Hammer and A. Kogan for acyclic Horn Boolean functions. Convex geometries of order
convex subsets in a poset also have tractable optimum basis. The problem of tractability of
optimum basis in convex geometries in general remains to be open.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A convex geometry is a closure system with the anti-exchange axiom.
In this paper we look at representation of finite convex geometries by the implicational bases. This continues a series of

papers [6] and [5] that translate the approaches of compact presentation of finite lattices into the realm of Horn propositional
logic.

If Σ = {Xi → Yi : i ⩽ k} is a set of implications defining a convex geometry, then the size of Σ is defined as
s(Σ) = |X1| + · · · + |Xk| + |Y1| + · · · + |Yk|. The set of implications Σ is called optimum, when s(Σ) is minimum among all
possible sets of implications defining convex geometry.

In this paper we address the following question: if a convex geometry is given by a set of implications Σ , is it possible to
find its optimum basis ΣO in time polynomially dependable on s(Σ)?

D. Maier [21] showed that the problem of finding the optimum basis for the general closure system, defined by a set of
implications, is NP-complete, thus, the question above most likely is answered in negative. On the other hand, some special
classes of closure systems may have tractable optimum bases. These are, for example, closure systems with the modular
closure lattices, as shown by M. Wild [28], or quasi-acyclic closure systems, as shown by P.L. Hammer and A. Kogan [17].
Note that the latter paper deals with Horn boolean functions and their optimal CNF-representation, and there are several
variations of optimization parameters. This is further discussed in K. Adaricheva and J.B. Nation [5].
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Among several types of bases introduced in [5], the F-basis becomes optimal for two parameters, when the closure system
is a convex geometry: for the size of premises in non-binary part of the basis, and for the size of conclusions in a binary one.
This is given in Theorem7and Lemma9of Section 3. In this paper,we also demonstrate three important sub-classes of convex
geometries, where the conclusions of non-binary implications can also be effectively optimized, thus, where the tractable
optimum basis exists: the class of geometries satisfying the n-Carousel property, order convex subsets of posets and convex
geometries without D-cycles. If the first class includes all affine convex geometries, the third one is the generalization of
acyclic closure systems of [17], G-geometries of M. Wild [27] and (dual) supersolvable anti-matroids of D. Armstrong [8]. We
show that a convex geometry without D-cycles has the tractable optimum basis, which is exactly basis ΣFOE defined in [5].
The three subclasses are addressed in Sections 4–6.

We note that all three classes differ from another tractable class, component-quadratic closure systems, that generalize
quasi-acyclic closure systems, see E. Boros et al. [10]. We discuss this and some open problems in Section 7.

2. Preliminaries

A closure system G = ⟨G, φ⟩, i.e. a set G with a closure operator φ : 2G
→ 2G, is called a convex geometry (see [4]), if it is

a zero-closed space (i.e. φ(∅) = ∅) and it satisfies the anti-exchange axiom, i.e.

x ∈ φ(X ∪ {y}) and x ̸∈ X imply that y ̸∈ φ(X ∪ {x})
for all x ̸= y in G and all closed X ⊆ G.

In this paper we consider only finite convex geometries, i.e. geometries with |G| < ω.
It is worth noting that convex geometries are always standard closure systems, i.e. they satisfy property

φ({i}) \ {i} is closed, for every i ∈ G.

This condition, in particular, implies i = j, whenever φ({i}) = φ({j}), for any i, j ∈ G.
Very often, a convex geometry is given by its collection of closed sets. There is a convenient description of those collections

of subsets of a given finite set G, which are, in fact, the closed sets of a convex geometry on G: if F ⊆ 2G satisfies
(1) ∅ ∈ F;
(2) X ∩ Y ∈ F , as soon as X, Y ∈ F;
(3) X ∈ F and X ̸= G implies X ∪ {a} ∈ F , for some a ∈ G \ X ,
then F represents the collection of closed sets of a convex geometry G = ⟨G, φ⟩.

As for any closure system, the closed sets of convex geometry form a lattice, which is usually called the closure lattice
and denoted Cl(G, φ). The closure lattices of convex geometries have various characterizations, and are usually called locally
distributive in the lattice literature.

A reader can be referred to [12,14] and [23] for the further details of combinatorial and lattice-theoretical aspects of finite
convex geometries.

If Y ⊆ φ(X), then this relation between subsets X, Y ⊆ G in a closure system can be written in the form of implication:
X → Y . Thus, the closure system ⟨G, φ⟩ can be given by the set of implications:

Σφ = {X → Y : X ⊆ G and Y ⊆ φ(X)}.

The set X is called the premise, and Y the conclusion of an implication X → Y . Wewill assume that any implication X → Y
is an ordered pair of non-empty subsets X, Y ⊆ G, and Y ∩ X = ∅.

Conversely, any set of implications Σ defines a closure system: the closed sets are exactly subsets Z ⊆ G that respect the
implications from Σ , i.e., if X → Y is in Σ , and X ⊆ Z , then Y ⊆ Z . There are numerous ways to represent the same closure
system by sets of implications; those sets of implications with someminimality property are called bases. Thus we can speak
of various sorts of bases.

As in K. Adaricheva et al. [6], we will call subset Σb
= {(A → B) ∈ Σ : |A| = 1} of given basis Σ the binary part of the

basis. Since every convex geometry ⟨G, φ⟩ is a standard closure system, the binary relation ≥φ on G defined as:

a≥φb iff b ∈ φ({a})

is a partial order. This is exactly the partial order of join irreducible elements in L = Cl(G, φ). If a≥φb, for a ̸= b, then every
basis of the closure system will contain an implication a → B (where bmay or may not be in B). The non-binary part of Σ is
Σnb

= Σ \ Σb.
We write |Σ | for the number of implications in Σ . Basis Σ is calledminimum, if |Σ | ⩽ |Σ∗

|, for any other basis Σ∗ of the
same system.

Number s(Σ) = |X1| + · · · + |Xn| + |Y1| + · · · + |Yn| is called the size of the basis Σ . A basis Σ is called optimum if
s(Σ) ⩽ s(Σ∗), for any other basis Σ∗ of the system. Similarly, one can define sL(Σ) = |X1| + · · · + |Xn|, the L-size, and
sR(Σ) = |Y1| + · · · + |Yn|, the R-size, of a basis Σ . The basis will be called left-side optimum (resp. right-side optimum), if
sL(Σ) ⩽ sL(Σ∗) (resp. sR(Σ) ⩽ sR(Σ∗)), for any other basis Σ∗.

Nowwe recall the major theorem of V. Duquenne and J.L. Guigues about the canonical basis [16], also see N. Caspard and
B. Monjardet [11].
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