Ramsey numbers of 4-uniform loose cycles

G.R. Omidi ${ }^{\text {a }}$,, M. Shahsiah ${ }^{\text {b,* }}$
a Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran
${ }^{\text {b }}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran

A RTICLE INFO

Article history:

Received 1 December 2016
Accepted 30 April 2017
Available online xxxx

Keywords:

Ramsey number
Uniform hypergraph
Loose path
Loose cycle

Abstract

Gyárfás, Sárközy and Szemerédi proved that the 2-color Ramsey number $R\left(\mathcal{C}_{n}^{k}, \mathcal{C}_{n}^{k}\right)$ of a k-uniform loose cycle \mathcal{C}_{n}^{k} is asymptotically $\frac{1}{2}(2 k-1) n$, generating the same result for $k=3$ due to Haxell et al. Concerning their results, it is conjectured that for every $n \geq m \geq 3$ and $k \geq 3$, $$
R\left(\mathcal{C}_{n}^{k}, \mathcal{C}_{m}^{k}\right)=(k-1) n+\left\lfloor\frac{m-1}{2}\right\rfloor
$$

In 2014, the case $k=3$ is proved by the authors. Recently, the authors showed that this conjecture is true for $n=m \geq 2$ and $k \geq 8$. Their method can be used for case $n=m \geq 2$ and $k=7$, but more details are required. The only open cases for the above conjecture when $n=m$ are $k=4,5,6$. Here, we investigate the case $k=4$, and we show that the conjecture holds for $k=4$ when $n>m$ or $n=m$ is odd. When $n=m$ is even, we show that $R\left(\mathcal{C}_{n}^{4}, \mathcal{C}_{n}^{4}\right)$ is between two values with difference one.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For given k-uniform hypergraphs \mathcal{G} and \mathcal{H}, the Ramsey number $R(\mathcal{G}, \mathcal{H})$ is the smallest positive integer N such that in every red-blue coloring of the edges of the complete k-uniform hypergraph \mathcal{K}_{N}^{k}, there is a red copy of \mathcal{G} or a blue copy of \mathcal{H}. A k-uniform loose cycle \mathcal{C}_{n}^{k} (shortly, a cycle of length n) is a hypergraph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n(k-1)}\right\}$ and with the set of n edges $e_{i}=\left\{v_{(i-1)(k-1)+1}, v_{(i-1)(k-1)+2}, \ldots, v_{(i-1)(k-1)+k}\right\}, 1 \leq i \leq n$, where we use $\bmod n(k-1)$ arithmetic. Similarly, a k-uniform loose path \mathcal{P}_{n}^{k} (shortly, a path of length n) is a hypergraph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n(k-1)+1}\right\}$ and with the set of n edges $e_{i}=\left\{v_{(i-1)(k-1)+1}, v_{(i-1)(k-1)+2}, \ldots, v_{(i-1)(k-1)+k}\right\}, 1 \leq i \leq n$. For an edge $e_{i}=\left\{v_{(i-1)(k-1)+1}, v_{(i-1)(k-1)+2}, \ldots, v_{i(k-1)+1}\right\}$ of a given loose path (also a given loose cycle) \mathcal{K}, the first vertex $\left(v_{(i-1)(k-1)+1}\right)$ and the last vertex $\left(v_{i(k-1)+1}\right)$ are denoted by $f_{\mathcal{K}, e_{i}}$ and $l_{\mathcal{K}, e_{i}}$, respectively. In this paper, we consider the problem of finding the 2-color Ramsey number of 4-uniform loose paths and cycles.

The investigation of the Ramsey numbers of hypergraph loose cycles was initiated by Haxell et al. in [3]. They proved $R\left(\mathcal{C}_{n}^{3}, \mathcal{C}_{n}^{3}\right)$ is asymptotically $\frac{5}{2} n$. This result was extended by Gyárfás, Sárközy and Szemerédi [2] to k-uniform loose cycles. More precisely, they proved that for all $\eta>0$ there exists $n_{0}=n_{0}(\eta)$ such that for every $n>n_{0}$, every 2-coloring of \mathcal{K}_{N}^{k} with $N=(1+\eta) \frac{1}{2}(2 k-1) n$ contains a monochromatic copy of \mathcal{C}_{n}^{k}.

In [1], Gyárfás and Raeisi determined the value of the Ramsey number of a k-uniform loose triangle and quadrangle. Recently, we proved the following general result on the Ramsey numbers of loose paths and loose cycles in 3-uniform hypergraphs.

[^0]Theorem 1.1 ([4]). For every $n \geq m \geq 3$,

$$
R\left(\mathcal{P}_{n}^{3}, \mathcal{P}_{m}^{3}\right)=R\left(\mathcal{P}_{n}^{3}, \mathcal{C}_{m}^{3}\right)=R\left(\mathcal{C}_{n}^{3}, \mathcal{C}_{m}^{3}\right)+1=2 n+\left\lfloor\frac{m+1}{2}\right\rfloor
$$

In [5], we presented another proof of Theorem 1.1 and posed the following conjecture.
Conjecture 1. Let $k \geq 3$ be an integer number. For every $n \geq m \geq 3$,

$$
R\left(\mathcal{P}_{n}^{k}, \mathcal{P}_{m}^{k}\right)=R\left(\mathcal{P}_{n}^{k}, \mathcal{C}_{m}^{k}\right)=R\left(\mathcal{C}_{n}^{k}, \mathcal{C}_{m}^{k}\right)+1=(k-1) n+\left\lfloor\frac{m+1}{2}\right\rfloor
$$

Also, the following theorem is obtained on the Ramsey number of loose paths and cycles in k-uniform hypergraphs [5].
Theorem 1.2 ([5]). Let $n \geq m \geq 2$ be given integers and $R\left(\mathcal{C}_{n}^{k}, \mathcal{C}_{m}^{k}\right)=(k-1) n+\left\lfloor\frac{m-1}{2}\right\rfloor$. Then, $R\left(\mathcal{P}_{n}^{k}, \mathcal{C}_{m}^{k}\right)=(k-1) n+\left\lfloor\frac{m+1}{2}\right\rfloor$ and $R\left(\mathcal{P}_{n}^{k}, \mathcal{P}_{m-1}^{k}\right)=(k-1) n+\left\lfloor\frac{m}{2}\right\rfloor$. Moreover, for $n=m$ we have $R\left(\mathcal{P}_{n}^{k}, \mathcal{P}_{m}^{k}\right)=(k-1) n+\left\lfloor\frac{m+1}{2}\right\rfloor$.

Using Theorem 1.2 , one can easily see that Conjecture 1 is equivalent to the following.
Conjecture 2. Let $k \geq 3$ be an integer number. For every $n \geq m \geq 3$,

$$
R\left(\mathcal{C}_{n}^{k}, \mathcal{C}_{m}^{k}\right)=(k-1) n+\left\lfloor\frac{m-1}{2}\right\rfloor
$$

Recently, it is shown that Conjecture 2 holds for $n=m$ and $k \geq 8$ (see [6]). As we mentioned in [6], our methods can be used to prove Conjecture 2 for $n=m$ and $k \geq 7$. Therefore, based on Theorem 1.1, the cases $k=4,5,6$ are the only open cases for Conjecture 2 when $n=m$ (the problem of determines the diagonal Ramsey number of loose cycles). In this paper, we extend the method that used in [5] and show that Conjecture 2 holds for $k=4$, unless $n=m$ and n is even. In this case, we show that $R\left(\mathcal{C}_{n}^{4}, \mathcal{C}_{n}^{4}\right)$ is between two values with difference one. More precisely, we show the following theorem.

Theorem 1.3. For every $n \geq m+1 \geq 4$,

$$
R\left(\mathcal{C}_{n}^{4}, \mathcal{C}_{m}^{4}\right)=3 n+\left\lfloor\frac{m-1}{2}\right\rfloor
$$

Moreover, if n is odd, then $R\left(\mathcal{C}_{n}^{4}, \mathcal{C}_{n}^{4}\right)=3 n+\left\lfloor\frac{n-1}{2}\right\rfloor$. Otherwise,

$$
3 n+\left\lfloor\frac{n-1}{2}\right\rfloor \leq R\left(\mathcal{C}_{n}^{4}, \mathcal{C}_{n}^{4}\right) \leq 3 n+\left\lfloor\frac{n-1}{2}\right\rfloor+1
$$

Consequently, using Theorem 1.2, we obtained the values of some Ramsey numbers involving paths. Here, we give a sketch of our proof for Theorem 1.3. We consider a two coloring of $\mathcal{K}_{3 n+\left\lfloor\frac{m-1}{4}\right\rfloor}$ by colors red and blue. Our proof is based on induction on $n+m$ and relies on the following approach: We consider the largest red cycle and show that if this cycle cannot be extended to a red \mathcal{C}_{n}^{4}, then there are many blue paths of lengths 2 between that cycle and other vertices. Then, we show that we can construct a blue copy of \mathcal{C}_{m}^{4} by combining these paths.

Throughout the paper, by Lemma 1 of [1], it suffices to prove only the upper bound for the claimed Ramsey numbers. Throughout the paper, for a 2-edge colored hypergraph \mathcal{H}, we denote by $\mathcal{H}_{\text {red }}$ and $\mathcal{H}_{\text {blue }}$ the induced hypergraphs on red edges and blue edges, respectively. Also, we denote by $|\mathcal{H}|$ and $\|\mathcal{H}\|$ the number of vertices and edges of \mathcal{H}, respectively.

2. Preliminaries

In this section, we prove some lemmas that will be needed in our main results. Also, we recall some results from [1] and [5].

Theorem 2.1 ([1]). For every $k \geq 3$,
(a) $R\left(\mathcal{P}_{3}^{k}, \mathcal{P}_{3}^{k}\right)=R\left(\mathcal{C}_{3}^{k}, \mathcal{P}_{3}^{k}\right)=R\left(\mathcal{C}_{3}^{k}, \mathcal{C}_{3}^{k}\right)+1=3 k-1$,
(b) $R\left(\mathcal{P}_{4}^{k}, \mathcal{P}_{4}^{k}\right)=R\left(\mathcal{C}_{4}^{k}, \mathcal{P}_{4}^{k}\right)=R\left(\mathcal{C}_{4}^{k}, \mathcal{C}_{4}^{k}\right)+1=4 k-2$.

Theorem 2.2 ([5]). Let $n, k \geq 3$ be integer numbers. Then,

$$
R\left(\mathcal{C}_{3}^{k}, \mathcal{C}_{n}^{k}\right)=(k-1) n+1
$$

In order to state our main results, we need some definitions. Let \mathcal{H} be a 2-edge colored complete 4 -uniform hypergraph, \mathcal{P} be a loose path in \mathcal{H} and W be a set of vertices with $W \cap V(\mathcal{P})=\emptyset$. By a ϖ_{S}-configuration, we mean a copy of \mathcal{P}_{2}^{4} with edges

$$
\left\{x, a_{1}, a_{2}, a_{3}\right\},\left\{a_{3}, a_{4}, a_{5}, y\right\}
$$

https://daneshyari.com/en/article/4949524

Download Persian Version:
https://daneshyari.com/article/4949524

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: romidi@cc.iut.ac.ir (G.R. Omidi), shahsiah@ipm.ir (M. Shahsiah).

