ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Ramsey numbers of 4-uniform loose cycles

G.R. Omidi^{a,b}, M. Shahsiah^{b,*}

^a Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran

^b School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran

ARTICLE INFO

Article history: Received 1 December 2016 Accepted 30 April 2017 Available online xxxx

Keywords: Ramsey number Uniform hypergraph Loose path Loose cycle

ABSTRACT

Gyárfás, Sárközy and Szemerédi proved that the 2-color Ramsey number $R(\mathcal{C}_n^k, \mathcal{C}_n^k)$ of a k-uniform loose cycle \mathcal{C}_n^k is asymptotically $\frac{1}{2}(2k-1)n$, generating the same result for k = 3 due to Haxell et al. Concerning their results, it is conjectured that for every $n \ge m \ge 3$ and $k \ge 3$,

$$R(\mathcal{C}_n^k, \mathcal{C}_m^k) = (k-1)n + \left\lfloor \frac{m-1}{2} \right\rfloor.$$

In 2014, the case k = 3 is proved by the authors. Recently, the authors showed that this conjecture is true for $n = m \ge 2$ and $k \ge 8$. Their method can be used for case $n = m \ge 2$ and k = 7, but more details are required. The only open cases for the above conjecture when n = m are k = 4, 5, 6. Here, we investigate the case k = 4, and we show that the conjecture holds for k = 4 when n > m or n = m is odd. When n = m is even, we show that $R(C_n^4, C_n^4)$ is between two values with difference one.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For given *k*-uniform hypergraphs \mathcal{G} and \mathcal{H} , the *Ramsey number* $R(\mathcal{G}, \mathcal{H})$ is the smallest positive integer N such that in every red–blue coloring of the edges of the complete *k*-uniform hypergraph \mathcal{K}_N^k , there is a red copy of \mathcal{G} or a blue copy of \mathcal{H} . A *k*-uniform loose cycle \mathcal{C}_n^k (shortly, a cycle of length n) is a hypergraph with vertex set $\{v_1, v_2, \ldots, v_{n(k-1)}\}$ and with the set of n edges $e_i = \{v_{(i-1)(k-1)+1}, v_{(i-1)(k-1)+2}, \ldots, v_{(i-1)(k-1)+k}\}, 1 \le i \le n$, where we use mod n(k-1) arithmetic. Similarly, a *k*-uniform loose path \mathcal{P}_n^k (shortly, a path of length n) is a hypergraph with vertex set $\{v_1, v_2, \ldots, v_{n(k-1)+1}\}$ and with the set of n edges $e_i = \{v_{(i-1)(k-1)+1}, v_{(i-1)(k-1)+2}, \ldots, v_{(i-1)(k-1)+k}\}, 1 \le i \le n$. For an edge $e_i = \{v_{(i-1)(k-1)+1}, v_{(i-1)(k-1)+2}, \ldots, v_{i(k-1)+1}\}$ of a given loose path (also a given loose cycle) \mathcal{K} , the first vertex $(v_{(i-1)(k-1)+1})$ and the last vertex $(v_{i(k-1)+1})$ are denoted by $f_{\mathcal{K},e_i}$, respectively. In this paper, we consider the problem of finding the 2-color Ramsey number of 4-uniform loose paths and cycles.

The investigation of the Ramsey numbers of hypergraph loose cycles was initiated by Haxell et al. in [3]. They proved $R(\mathcal{C}_n^3, \mathcal{C}_n^3)$ is asymptotically $\frac{5}{2}n$. This result was extended by Gyárfás, Sárközy and Szemerédi [2] to *k*-uniform loose cycles. More precisely, they proved that for all $\eta > 0$ there exists $n_0 = n_0(\eta)$ such that for every $n > n_0$, every 2-coloring of \mathcal{K}_N^k with $N = (1 + \eta)\frac{1}{2}(2k - 1)n$ contains a monochromatic copy of \mathcal{C}_n^k .

In [1], Gyárfás and Raeisi determined the value of the Ramsey number of a *k*-uniform loose triangle and quadrangle. Recently, we proved the following general result on the Ramsey numbers of loose paths and loose cycles in 3-uniform hypergraphs.

* Corresponding author.

http://dx.doi.org/10.1016/j.dam.2017.04.046 0166-218X/© 2017 Elsevier B.V. All rights reserved.

E-mail addresses: romidi@cc.iut.ac.ir (G.R. Omidi), shahsiah@ipm.ir (M. Shahsiah).

2

ARTICLE IN PRESS

G.R. Omidi, M. Shahsiah / Discrete Applied Mathematics 🛚 (

Theorem 1.1 ([4]). *For every* $n \ge m \ge 3$,

$$R(\mathcal{P}_n^3, \mathcal{P}_m^3) = R(\mathcal{P}_n^3, \mathcal{C}_m^3) = R(\mathcal{C}_n^3, \mathcal{C}_m^3) + 1 = 2n + \left\lfloor \frac{m+1}{2} \right\rfloor.$$

In [5], we presented another proof of Theorem 1.1 and posed the following conjecture.

Conjecture 1. Let $k \ge 3$ be an integer number. For every $n \ge m \ge 3$,

$$R(\mathcal{P}_n^k, \mathcal{P}_m^k) = R(\mathcal{P}_n^k, \mathcal{C}_m^k) = R(\mathcal{C}_n^k, \mathcal{C}_m^k) + 1 = (k-1)n + \left\lfloor \frac{m+1}{2} \right\rfloor$$

Also, the following theorem is obtained on the Ramsey number of loose paths and cycles in k-uniform hypergraphs [5].

Theorem 1.2 ([5]). Let $n \ge m \ge 2$ be given integers and $R(\mathcal{C}_n^k, \mathcal{C}_m^k) = (k-1)n + \lfloor \frac{m-1}{2} \rfloor$. Then, $R(\mathcal{P}_n^k, \mathcal{C}_m^k) = (k-1)n + \lfloor \frac{m+1}{2} \rfloor$ and $R(\mathcal{P}_n^k, \mathcal{P}_m^k) = (k-1)n + \lfloor \frac{m}{2} \rfloor$. Moreover, for n = m we have $R(\mathcal{P}_n^k, \mathcal{P}_m^k) = (k-1)n + \lfloor \frac{m+1}{2} \rfloor$.

Using Theorem 1.2, one can easily see that Conjecture 1 is equivalent to the following.

Conjecture 2. Let $k \ge 3$ be an integer number. For every $n \ge m \ge 3$,

$$R(\mathcal{C}_n^k, \mathcal{C}_m^k) = (k-1)n + \left\lfloor \frac{m-1}{2} \right\rfloor.$$

Recently, it is shown that Conjecture 2 holds for n = m and $k \ge 8$ (see [6]). As we mentioned in [6], our methods can be used to prove Conjecture 2 for n = m and $k \ge 7$. Therefore, based on Theorem 1.1, the cases k = 4, 5, 6 are the only open cases for Conjecture 2 when n = m (the problem of determines the diagonal Ramsey number of loose cycles). In this paper, we extend the method that used in [5] and show that Conjecture 2 holds for k = 4, unless n = m and n is even. In this case, we show that $R(C_n^4, C_n^4)$ is between two values with difference one. More precisely, we show the following theorem.

Theorem 1.3. *For every* $n \ge m + 1 \ge 4$ *,*

$$R(\mathcal{C}_n^4, \mathcal{C}_m^4) = 3n + \left\lfloor \frac{m-1}{2} \right\rfloor.$$

Moreover, if *n* is odd, then $R(\mathcal{C}_n^4, \mathcal{C}_n^4) = 3n + \left| \frac{n-1}{2} \right|$. Otherwise,

$$3n + \left\lfloor \frac{n-1}{2} \right\rfloor \le R(\mathcal{C}_n^4, \mathcal{C}_n^4) \le 3n + \left\lfloor \frac{n-1}{2} \right\rfloor + 1.$$

Consequently, using Theorem 1.2, we obtained the values of some Ramsey numbers involving paths. Here, we give a sketch of our proof for Theorem 1.3. We consider a two coloring of $\mathcal{K}_{3n+\lfloor\frac{m-1}{2}\rfloor}^4$ by colors red and blue. Our proof is based on induction on n + m and relies on the following approach: We consider the largest red cycle and show that if this cycle cannot be extended to a red \mathcal{C}_n^4 , then there are many blue paths of lengths 2 between that cycle and other vertices. Then, we show that we can construct a blue copy of \mathcal{C}_m^4 by combining these paths.

Throughout the paper, by Lemma 1 of [1], it suffices to prove only the upper bound for the claimed Ramsey numbers. Throughout the paper, for a 2-edge colored hypergraph \mathcal{H} , we denote by \mathcal{H}_{red} and \mathcal{H}_{blue} the induced hypergraphs on red edges and blue edges, respectively. Also, we denote by $|\mathcal{H}|$ and $||\mathcal{H}||$ the number of vertices and edges of \mathcal{H} , respectively.

2. Preliminaries

In this section, we prove some lemmas that will be needed in our main results. Also, we recall some results from [1] and [5].

Theorem 2.1 ([1]). *For every* $k \ge 3$ *,*

(a) $R(\mathcal{P}_3^k, \mathcal{P}_3^k) = R(\mathcal{C}_3^k, \mathcal{P}_3^k) = R(\mathcal{C}_3^k, \mathcal{C}_3^k) + 1 = 3k - 1$,

(b)
$$R(\mathcal{P}^k_{\mathcal{A}}, \mathcal{P}^k_{\mathcal{A}}) = R(\mathcal{C}^k_{\mathcal{A}}, \mathcal{P}^k_{\mathcal{A}}) = R(\mathcal{C}^k_{\mathcal{A}}, \mathcal{C}^k_{\mathcal{A}}) + 1 = 4k - 2$$

Theorem 2.2 ([5]). Let $n, k \ge 3$ be integer numbers. Then,

$$R(C_3^k, C_n^k) = (k-1)n + 1.$$

In order to state our main results, we need some definitions. Let \mathcal{H} be a 2-edge colored complete 4-uniform hypergraph, \mathcal{P} be a loose path in \mathcal{H} and W be a set of vertices with $W \cap V(\mathcal{P}) = \emptyset$. By a ϖ_S -configuration, we mean a copy of \mathcal{P}_2^4 with edges

 $\{x, a_1, a_2, a_3\}, \{a_3, a_4, a_5, y\},\$

Please cite this article in press as: G.R. Omidi, M. Shahsiah, Ramsey numbers of 4-uniform loose cycles, Discrete Applied Mathematics (2017), http://dx.doi.org/10.1016/j.dam.2017.04.046.

Download English Version:

https://daneshyari.com/en/article/4949524

Download Persian Version:

https://daneshyari.com/article/4949524

Daneshyari.com