## Note

# On the bipartite graph packing problem 

Bálint Vásárhelyi

Szegedi Tudományegyetem, Bolyai Intézet. Aradi vértanúk tere 1., Szeged, 6720, Hungary

## ARTICLE INFO

## Article history:

Received 11 December 2015
Received in revised form 28 November 2016
Accepted 19 April 2017
Available online xxxx

## Keywords:

Graph packing
Bipartite
Degree sequence


#### Abstract

The graph packing problem is a well-known area in graph theory. We consider a bipartite version and give almost tight conditions.


© 2017 Elsevier B.V. All rights reserved.

## 1. Notation

We consider only simple graphs. Throughout the paper we use common graph theory notations: $d_{G}(v)$ (or briefly, if $G$ is understood from the context, $d(v)$ ) is the degree of $v$ in $G$, and $\Delta(G)$ is the maximal and $\delta(G)$ is the minimal degree of $G$, and $e(X, Y)$ is the number of edges between $X$ and $Y$ for $X \cap Y=\emptyset$. For any function $f$ on $V$ let $f(X)=\sum_{v \in X} f(v)$ for every $X \subseteq V$. $\pi(G)$ is the degree sequence of $G$.

## 2. Introduction

Let $G$ and $H$ be two graphs on $n$ vertices. We say that $G$ and $H$ pack if and only if $K_{n}$ contains edge-disjoint copies of $G$ and $H$ as subgraphs.

The graph packing problem can be formulated as an embedding problem, too. $G$ and $H$ pack if and only if $H$ is isomorphic to a subgraph of $\bar{G}(H \subseteq \bar{G})$.

A classical result in this field is the following theorem of Sauer and Spencer.
Theorem 1 (Sauer, Spencer [14]). Let $G_{1}$ and $G_{2}$ be graphs on $n$ vertices with maximum degrees $\Delta_{1}$ and $\Delta_{2}$, respectively. If $\Delta_{1} \Delta_{2}<\frac{n}{2}$, then $G_{1}$ and $G_{2}$ pack.

Many questions in graph theory can be formulated as special packing problems, see [9].
We study the bipartite packing problem as it is formulated by Catlin [3], Hajnal and Szegedy [7] and was used by Hajnal for proving deep results in complexity theory of decision trees [6]. We are not going to state what Hajnal and Szegedy proved in [7], since it is technically involved. However, we present two previous results in bipartite packing, as in certain cases our main theorem is stronger than those.

Let $G_{1}=\left(A, B ; E_{1}\right)$ and $G_{2}=\left(S, T ; E_{2}\right)$ be bipartite graphs with $|A|=|S|=m$ and $|B|=|T|=n$. Sometimes, we use only $G(A, B)$ if we want to say that $G$ is a bipartite graph with classes $A$ and $B$. Let $\Delta_{A}\left(G_{1}\right)$ be the maximal degree of $G_{1}$ in $A$. We use $\Delta_{B}\left(G_{1}\right)$ similarly.

[^0]The bipartite graphs $G_{1}$ and $G_{2}$ pack in the bipartite sense (i.e. they have a bipartite packing) if there are edge-disjoint copies of $G_{1}$ and $G_{2}$ in $K_{m, n}$.

The bipartite packing problem can be also formulated as a question of embedding. The bipartite graphs $G_{1}=(A, B ; E)$ and $G_{2}$ pack if and only if $G_{2}$ is isomorphic to a subgraph of $\widetilde{G}_{1}$, which is the bipartite complement of $G_{1}$, i.e. $\widetilde{G}_{1}=(A, B ;(A \times B)-E)$.

First, we present the result of Wojda and Vaderlind. Before formulating their theorem, we need to introduce three families of graph pairs which they use [17].

Let $\Gamma_{1}$ be the family of pairs $\left\{G(L, R), G^{\prime}\left(L^{\prime}, R^{\prime}\right)\right\}$ of bipartite graphs that $G$ contains a star (i.e. one vertex in $L$ is connected to all vertices of $R$ ), and in $\delta_{L^{\prime}}\left(G^{\prime}\right) \geq 1$.

Let $\Gamma_{2}$ be the family of pairs $\left\{G(L, R), G^{\prime}\left(L^{\prime}, R^{\prime}\right)\right\}$ of bipartite graphs such that $L=\left\{a_{1}, a_{2}\right\}$, and $d_{G}\left(a_{1}\right)=d_{G}\left(a_{2}\right)=2$; and $L^{\prime}=\left\{a_{1}^{\prime}, a_{2}^{\prime}\right\}, d_{G^{\prime}}\left(a_{1}^{\prime}\right)=|R|-1, d_{G^{\prime}}\left(a_{2}^{\prime}\right)=0$, finally, $\Delta_{R}(G)=\Delta_{R}\left(G^{\prime}\right)=1$.

The family $\Gamma_{3}$ is the pair $\left\{G, G^{\prime}\right\}$, where $G=K_{2,2} \cup \overline{K_{1,1}}$, and $G^{\prime}$ is a one-factor.
Theorem 2 ([17]). Let $G=(L, R ; E)$ and $G^{\prime}=\left(L^{\prime}, R^{\prime} ; E^{\prime}\right)$ be two bipartite graphs with $|L|=\left|L^{\prime}\right|=p \geq 2$ and $|R|=\left|R^{\prime}\right|=q \geq 2$, such that

$$
\begin{equation*}
e(G)+e\left(G^{\prime}\right) \leq+q+\varepsilon\left(G, G^{\prime}\right) \tag{1}
\end{equation*}
$$

where $\varepsilon\left(G, G^{\prime}\right)=\min \left\{p-\Delta_{R}(G), p-\Delta_{R^{\prime}}\left(G^{\prime}\right), q-\Delta_{L}(G), q-\Delta_{L^{\prime}}\left(G^{\prime}\right)\right\}$.
Then $G$ and $G^{\prime}$ pack unless either
(i) $\varepsilon\left(G, G^{\prime}\right)=0$ and $\left\{G, G^{\prime}\right\} \in \Gamma_{1}$, or
(ii) $\varepsilon\left(G, G^{\prime}\right)=1$ and $\left\{G, G^{\prime}\right\} \in \Gamma_{2} \cup \Gamma_{3}$.

Another theorem in this field is by Wang.
Theorem $3([15])$. Let $G(A, B)$ and $H(S, T)$ be two $C_{4}$-free bipartite graphs of order $n$ with $|A|=|B|=|S|=|T|=n$, and $e(G)+e(H) \leq 2 n-2$. Then there is a packing of $G$ and $H$ in $K_{n+1, n+1}$ (i.e. an edge-disjoint embedding of $G$ and $H$ into $K_{n+1, n+1}$ ), unless one is a union of vertex-disjoint cycles and the other is a union of two-disjoint stars.

For more results in this field, we refer the interested reader to the monograph on factor theory of Yu and Liu [18].
The main question of extremal graph theory is that at most how many edges a $G$ graph might have (or what is its minimum degree) if there is an excluded subgraph $H$.

Let us formulate our main result in the following theorem as an embedding problem.
Theorem 4. For every $\varepsilon \in\left(0, \frac{1}{2}\right)$ there is an $n_{0}=n_{0}(\varepsilon)$ such that if $n>n_{0}$, and $G(A, B)$ and $H(S, T)$ are bipartite graphs with $|A|=|B|=|S|=|T|=n$ and the following conditions hold, then $H \subseteq G$.
Condition 1: $\quad d_{G}(x)>\left(\frac{1}{2}+\varepsilon\right) n$ holds for all $x \in A \cup B$
Condition 2: $\quad d_{H}(x)<\frac{\varepsilon^{4}}{100} \frac{n}{\log n}$ holds for all $x \in S$,
Condition 3: $\quad d_{H}(y)=1$ holds for all $y \in T$.
We prove Theorem 4 in the next section. First we indicate why we have the bounds in Conditions 1 and 2.
The following two examples show that it is necessary to make an assumption on $\delta(G)$ (see Condition 1 ) and on $\Delta_{S}(H)$ (see Condition 2).

First, let $G=K_{\frac{n}{2}+1, \frac{n}{2}-1} \cup K_{\frac{n}{2}-1, \frac{n}{2}+1}$. Clearly, $G$ has no perfect matching. This shows that the bound in Condition 1 is close to being best possible.

For the second example, we choose $G=G(n, n, 0.6)$ to be a random bipartite graph. Standard probability reasoning shows that with high probability, $G$ satisfies Condition 1 . However, $H$ cannot be embedded into $G$, where $H(S, T)$ is the following bipartite graph: each vertex in $T$ has degree 1. In $S$ all vertices have degree 0 , except $\frac{\log n}{c}$ vertices with degree $\frac{c n}{\log n}$. The graph $H$ cannot be embedded into $G$, what follows from the example of Komlós et al. [10].

Remark 5. There are graphs which can be packed using Theorem 4, though Theorem 2 does not imply that they pack.
For instance, let $G(A, B)$ and $H(S, T)$ be bipartite graphs with $|A|=|B|=|S|=|T|=n$. Choose $H$ to be a 1-factor, and $G$ to be a graph such that all vertices in $A$ have degree $\left(\frac{1}{2}+\frac{1}{100}\right) n$. This pair of graphs obviously satisfies the conditions of Theorem 4, thus, $H$ can be embedded into $G$, which means that $H$ can be packed with the bipartite complement of $\widetilde{G}$.

Now, we check the conditions of Theorem 2 for the graphs $\widetilde{G}$ and $H$. We know that $e(H)=n$, as $H$ is a 1-factor. Furthermore, in $\widetilde{G}$ each vertex in $A$ has degree $\left(\frac{1}{2}-\frac{1}{100}\right) n$, which means that the number of edges is approximately $\frac{n^{2}}{4}$. As $\varepsilon(H, \widetilde{G}) \leq n$, the condition of Theorem 2 is obviously not satisfied.

Remark 6. There are graphs which can be packed using Theorem 4, though Theorem 3 does not imply that they pack. Let $G$ be the union of $\frac{n}{3}$ disjoint copies of $C_{6}$ 's and $H$ be a 1-factor. Obviously, $H$ is $C_{4}$-free, but the condition of Theorem 3 is not satisfied for $G$ and $H$, as $e(G)+e(H)=3 n$.

However, our theorem can give an embedding of $H$ into $\widetilde{G}$, as all conditions of Theorem 4 are satisfied with these graphs. This provides a packing of $H$ and $G$.

# https://daneshyari.com/en/article/4949546 

Download Persian Version:

## https://daneshyari.com/article/4949546

## Daneshyari.com


[^0]:    E-mail address: mesti@math.u-szeged.hu.

