ARTICLE IN PRESS

Discrete Applied Mathematics [(]]] ...

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note On the bipartite graph packing problem Bálint Vásárhelvi

Szegedi Tudományegyetem, Bolyai Intézet. Aradi vértanúk tere 1., Szeged, 6720, Hungary

ARTICLE INFO

ABSTRACT

The graph packing problem is a well-known area in graph theory. We consider a bipartite version and give almost tight conditions.

© 2017 Elsevier B.V. All rights reserved.

Article history: Received 11 December 2015 Received in revised form 28 November 2016 Accepted 19 April 2017 Available online xxxx

Keywords: Graph packing Bipartite Degree sequence

1. Notation

We consider only simple graphs. Throughout the paper we use common graph theory notations: $d_G(v)$ (or briefly, if *G* is understood from the context, d(v)) is the degree of v in *G*, and $\Delta(G)$ is the maximal and $\delta(G)$ is the minimal degree of *G*, and e(X, Y) is the number of edges between *X* and *Y* for $X \cap Y = \emptyset$. For any function *f* on *V* let $f(X) = \sum_{v \in X} f(v)$ for every $X \subseteq V$. $\pi(G)$ is the degree sequence of *G*.

2. Introduction

Let G and H be two graphs on n vertices. We say that G and H pack if and only if K_n contains edge-disjoint copies of G and H as subgraphs.

The graph packing problem can be formulated as an embedding problem, too. *G* and *H* pack if and only if *H* is isomorphic to a subgraph of \overline{G} ($H \subseteq \overline{G}$).

A classical result in this field is the following theorem of Sauer and Spencer.

Theorem 1 (Sauer, Spencer [14]). Let G_1 and G_2 be graphs on n vertices with maximum degrees Δ_1 and Δ_2 , respectively. If $\Delta_1 \Delta_2 < \frac{n}{2}$, then G_1 and G_2 pack.

Many questions in graph theory can be formulated as special packing problems, see [9].

We study the **bipartite packing problem** as it is formulated by Catlin [3], Hajnal and Szegedy [7] and was used by Hajnal for proving deep results in complexity theory of decision trees [6]. We are not going to state what Hajnal and Szegedy proved in [7], since it is technically involved. However, we present two previous results in bipartite packing, as in certain cases our main theorem is stronger than those.

Let $G_1 = (A, B; E_1)$ and $G_2 = (S, T; E_2)$ be bipartite graphs with |A| = |S| = m and |B| = |T| = n. Sometimes, we use only G(A, B) if we want to say that G is a bipartite graph with classes A and B. Let $\Delta_A(G_1)$ be the maximal degree of G_1 in A. We use $\Delta_B(G_1)$ similarly.

E-mail address: mesti@math.u-szeged.hu.

http://dx.doi.org/10.1016/j.dam.2017.04.019 0166-218X/© 2017 Elsevier B.V. All rights reserved.

ARTICLE IN PRESS

B. Vásárhelyi / Discrete Applied Mathematics 🛛 (💵 🖿) 💵 – 💵

The bipartite graphs G_1 and G_2 pack in the bipartite sense (i.e. they have a *bipartite packing*) if there are edge-disjoint copies of G_1 and G_2 in $K_{m,n}$.

The bipartite packing problem can be also formulated as a question of embedding. The bipartite graphs $G_1 = (A, B; E)$ and G_2 pack if and only if G_2 is isomorphic to a subgraph of G_1 , which is the bipartite complement of G_1 , i.e. $G_1 = (A, B; (A \times B) - E)$. First, we present the result of Wojda and Vaderlind. Before formulating their theorem, we need to introduce three families

of graph pairs which they use [17]. Let Γ_1 be the family of pairs {G(L, R), G'(L', R')} of bipartite graphs that G contains a star (i.e. one vertex in L is connected to all vertices of R), and in $\delta_{I'}(G') \ge 1$.

Let Γ_2 be the family of pairs $\{\overline{G}(L, R), G'(L', R')\}$ of bipartite graphs such that $L = \{a_1, a_2\}$, and $d_G(a_1) = d_G(a_2) = 2$; and $L' = \{a'_1, a'_2\}, d_{G'}(a'_1) = |R| - 1, d_{G'}(a'_2) = 0$, finally, $\Delta_R(\underline{G}) = \Delta_R(G') = 1$.

The family Γ_3 is the pair {*G*, *G*'}, where $G = K_{2,2} \cup \overline{K_{1,1}}$, and *G*' is a one-factor.

Theorem 2 ([17]). Let G = (L, R; E) and G' = (L', R'; E') be two bipartite graphs with $|L| = |L'| = p \ge 2$ and $|R| = |R'| = q \ge 2$, such that

(1)

$$e(G) + e(G') \le +q + \varepsilon(G, G')$$

where $\varepsilon(G, G') = \min\{p - \Delta_R(G), p - \Delta_{R'}(G'), q - \Delta_L(G), q - \Delta_{L'}(G')\}$. Then G and G' pack unless either

(i) $\varepsilon(G, G') = 0$ and $\{G, G'\} \in \Gamma_1$, or

(ii) $\varepsilon(G, G') = 1$ and $\{G, G'\} \in \Gamma_2 \cup \Gamma_3$.

Another theorem in this field is by Wang.

Theorem 3 ([15]). Let G(A, B) and H(S, T) be two C_4 -free bipartite graphs of order n with |A| = |B| = |S| = |T| = n, and $e(G) + e(H) \le 2n - 2$. Then there is a packing of G and H in $K_{n+1,n+1}$ (i.e. an edge-disjoint embedding of G and H into $K_{n+1,n+1}$), unless one is a union of vertex-disjoint cycles and the other is a union of two-disjoint stars.

For more results in this field, we refer the interested reader to the monograph on factor theory of Yu and Liu [18].

The main question of extremal graph theory is that at most how many edges a *G* graph might have (or what is its minimum degree) if there is an excluded subgraph *H*.

Let us formulate our main result in the following theorem as an embedding problem.

Theorem 4. For every $\varepsilon \in (0, \frac{1}{2})$ there is an $n_0 = n_0(\varepsilon)$ such that if $n > n_0$, and G(A, B) and H(S, T) are bipartite graphs with |A| = |B| = |S| = |T| = n and the following conditions hold, then $H \subseteq G$.

Condition 1: $d_G(x) > (\frac{1}{2} + \varepsilon)$ n holds for all $x \in A \cup B$

Condition 2: $d_H(x) < \frac{\varepsilon^4}{100 \log n}$ holds for all $x \in S$,

Condition 3: $d_H(y) = 1$ holds for all $y \in T$.

We prove Theorem 4 in the next section. First we indicate why we have the bounds in Conditions 1 and 2.

The following two examples show that it is necessary to make an assumption on $\delta(G)$ (see Condition 1) and on $\Delta_S(H)$ (see Condition 2).

First, let $G = K_{\frac{n}{2}+1,\frac{n}{2}-1} \cup K_{\frac{n}{2}-1,\frac{n}{2}+1}$. Clearly, *G* has no perfect matching. This shows that the bound in Condition 1 is close to being best possible.

For the second example, we choose G = G(n, n, 0.6) to be a random bipartite graph. Standard probability reasoning shows that with high probability, *G* satisfies Condition 1. However, *H* cannot be embedded into *G*, where H(S, T) is the following bipartite graph: each vertex in *T* has degree 1. In *S* all vertices have degree 0, except $\frac{\log n}{c}$ vertices with degree $\frac{(n - 1)}{\log n}$. The graph *H* cannot be embedded into *G*, what follows from the example of Komlós et al. [10].

Remark 5. There are graphs which can be packed using Theorem 4, though Theorem 2 does not imply that they pack.

For instance, let G(A, B) and H(S, T) be bipartite graphs with |A| = |B| = |S| = |T| = n. Choose H to be a 1-factor, and G to be a graph such that all vertices in A have degree $(\frac{1}{2} + \frac{1}{100})n$. This pair of graphs obviously satisfies the conditions of Theorem 4, thus, H can be embedded into G, which means that H can be packed with the bipartite complement of \tilde{G} .

Now, we check the conditions of Theorem 2 for the graphs \tilde{G} and H. We know that e(H) = n, as H is a 1-factor. Furthermore, in \tilde{G} each vertex in A has degree $(\frac{1}{2} - \frac{1}{100})n$, which means that the number of edges is approximately $\frac{n^2}{4}$. As $\varepsilon(H, \tilde{G}) \le n$, the condition of Theorem 2 is obviously not satisfied. \Box

Remark 6. There are graphs which can be packed using Theorem 4, though Theorem 3 does not imply that they pack. Let *G* be the union of $\frac{n}{3}$ disjoint copies of *C*₆'s and *H* be a 1-factor. Obviously, *H* is *C*₄-free, but the condition of Theorem 3 is not satisfied for *G* and *H*, as e(G) + e(H) = 3n.

However, our theorem can give an embedding of *H* into \tilde{G} , as all conditions of Theorem 4 are satisfied with these graphs. This provides a packing of *H* and *G*. \Box

Please cite this article in press as: B. Vásárhelyi, On the bipartite graph packing problem, Discrete Applied Mathematics (2017), http://dx.doi.org/10.1016/j.dam.2017.04.019.

2

Download English Version:

https://daneshyari.com/en/article/4949546

Download Persian Version:

https://daneshyari.com/article/4949546

Daneshyari.com