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a b s t r a c t

The first multiplicative Zagreb index of a graph G is the product of the square of every
vertex degree, while the second multiplicative Zagreb index is the product of the products
of degrees of pairs of adjacent vertices. In this paper, we explore the trees in terms of given
number of vertices of maximum degree. Themaximum andminimum values of

∏
1(G) and∏

2(G) of trees with arbitrary number of maximum degree are provided. In addition, the
corresponding extremal graphs are characterized.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we consider simple, connected and undirected graphs. Denote a graph by G = (V , E), where
V = V (G) is called vertex set and E = E(G) is called edge set. For a vertex v ∈ V (G), the neighborhood of v is the set
N(v) = NG(v) = {w ∈ V (G), vw ∈ E(G)}, and dG(v) (or d(v)) denotes the degree of v with dG(v) = |N(v)|. ni is the number
of vertices of degree i ≥ 0. If a graph G contains n vertices and n − 1 edges, then G is called a tree. For a vertex v ∈ V (T )
with 2 ≤ dT (v) ≤ ∆(T ) − 1, its edge rotating capacity is defined to be dT (v) − 1. The total edge rotating capacity of a tree T
is equal to the sum of the edge rotating capacities of its vertices that satisfy the condition 2 ≤ dT (v) ≤ ∆(T ) − 1. As usual,
denote Pn by the path on n vertices. The maximum vertex degree in the graph G is denoted by ∆(G).

The degree sequence of G is a sequence of positive integers π = (d1, d2, . . . , dn) if di = dG(v)(i = 1, . . . , n) holds for
v ∈ V (G). In this work, we assign an order of the vertex degrees as non-increasing, i.e., d1 ≥ d2 ≥ · · · ≥ dn. In addition,
a sequence π = (d1, d2, . . . , dn) is called a tree degree sequence if there exists a tree T such that π is its degree sequence.
Furthermore, it is well known that the sequence π = (d1, d2, . . . , dn) is a degree sequence of a tree with n vertices if and
only if

n∑
i=1

di = 2(n − 1).

In the interdisciplinary of mathematics, chemistry and physics, molecular invariants/descriptors could be useful for the
study of quantitative structure–property relationships (QSPR) and quantitative structure–activity relationships (QSAR) and
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for the descriptive presentations of biological and chemical properties, such as boiling and melting points, toxicity, physico-
chemical, and biological properties [4,5,12,14,20,22,25]. One class of the oldest topological molecular descriptors are
named as Zagreb indices [7], which are literal quantities in expected formulas for the total π-electron energy of conjugated
molecules as follows.

M1(G) =

∑
u∈V (G)

d(u)2 and M2(G) =

∑
uv∈E(G)

d(u)d(v).

Based on the successful considerations on these applications of Zagreb indices [6], Todeschini et al. (2010) [17,18,21]
presented the following multiplicative variants of molecular structure descriptors:∏

1

(G) =

∏
u∈V (G)

d(u)2 and
∏
2

(G) =

∏
uv∈E(G)

d(u)d(v) =

∏
u∈V (G)

d(u)d(u).

Recently, there are lots of articles that explored multiplicative Zagreb indices in the interdisciplinary of chemistry and
mathematics [3,8,9,13,16,19,23]. Iranmanesh et al. [10] explored first and second multiplicative Zagreb indices for a class of
chemical dendrimers. Xu and Hua [24] provided a unified approach to characterize extremal maximal and minimal trees,
unicyclic graphs and bicyclic graphs regarding multiplicative Zagreb indices, respectively. Wang and Wei [21] gave the
maximum and minimum indices of these indices in k-trees, and the corresponding extreme graphs are provided. Liu and
Zhang [25] investigated some sharp upper bounds for

∏
1-index and

∏
2-index in terms of graph parameters such as an

order, a size and a radius [15]. Kazemi [11] studied the bounds for the moments and the probability generating function of
these indices in a randomly chosen molecular graph with tree structure of order n. Borovićanin et al. [1] introduced upper
bounds on Zagreb indices of trees, and a lower bound for the first Zagreb index of trees with a given domination number
is determined and the extremal trees are characterized as well. Borovićanin and Lampert [2] provided the maximum and
minimum Zagreb indices of trees with given number of vertices of maximum degree.

Motivated by above results, in this paper we further investigate the multiplicative Zagreb indices of trees with arbitrary
number of vertices of maximum degree. The maximum and minimum values of

∏
1(G) and

∏
2(G) of trees with arbitrary

number of maximum degree are provided. In addition, the corresponding extreme graphs are characterized. Our results
extend and enrich some known conclusions obtained by [2].

2. Preliminaries

It is known that each tree has at least two minimum degree vertices, named as pendent vertices, and some maximum
degree vertices. It is natural to consider the trees with arbitrary number of maximum degree vertices.

Let Tn,k be the class of trees with n vertices, in which there exist k vertices having the maximum degree with n > k > 0.
Note that the path Pn is the unique element of Tn,n−2. So, in the following we consider the class Tn,k with k ≤ n − 3.

We first introduce several facts and tools, which are important in the proofs of following sections.

Proposition 2.1 ([2]). If T ∈ Tn,k is a tree with k vertices of maximum degree ∆, then ∆ ≤ ⌊
n−2
k ⌋ + 1.

By the routine calculations, one can derive the following propositions.

Proposition 2.2. Let f (x) =
x

x+m be a function with m > 0. Then f (x) is increasing in R.

Proposition 2.3. Let g(x) =
xx

(x+m)x+m be a function with m > 0. Then g(x) is decreasing in R.

Based on the above algebraic tools, we are ready to provide the sharp upper and lower bounds of first multiplicative
Zagreb index of such trees in Section 3, and the sharp upper and lower bounds of second multiplicative Zagreb index of
these trees in Section 4. Some of notations and figures are used close to [2].

3. The sharp upper and lower bounds of first multiplicative Zagreb index on the trees

In this section, we obtain the bounds of the first multiplicative Zagreb index in the class Tn,k.

3.1. The sharp upper bounds of
∏

1 on trees with given number of vertices of maximum degree

The first multiplicative Zagreb index of Tn,k can be routinely calculated if the degree sequence is given.

Lemma 3.1. Let T 1
min be a tree with minimal value of first multiplicative Zagreb index in Tn,k. Then ∆(T 1

min) = ⌊
n−2
k ⌋ + 1.



Download English Version:

https://daneshyari.com/en/article/4949548

Download Persian Version:

https://daneshyari.com/article/4949548

Daneshyari.com

https://daneshyari.com/en/article/4949548
https://daneshyari.com/article/4949548
https://daneshyari.com

