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1. Introduction

Let G(V, E) be a simple graph with n vertices and m edges having vertex set V(G) = {vq, v2, ..., v,} and edge set
E(G) = {e1, e, ..., ey}. The adjacency matrix A = (a;;) of Gis a (0, 1)-square matrix of order n whose (i, j)-entry is equal
to 1, if v; is adjacent to v; and equal to 0, otherwise. Let D(G) = diag(ds, d», . .., dy) be the diagonal matrix associated to G,
where d; = deg(v;), foralli =1, 2, ..., n. The matrices L(G) = D(G) —A(G) and Q (G) = D(G) +A(G) are respectively called
Laplacian and signless Laplacian matrices and their spectrum are respectively called Laplacian spectrum (L-spectrum) and
signless Laplacian spectrum (Q -spectrum) of the graph G. Both L(G) and Q (G) are real symmetric and positive semi-definite
matrices. Welet0 = up < pp—q < --- < prand0 < q, < qp—1 < --- < q; to be the L-spectrum and Q-spectrum
of G, respectively. It is well known that u, = 0 with multiplicity equal to the number of connected components of G and
n—1 > 0if and only if G is connected [12]. Moreover u; = g;, foralli = 1, 2, ..., nif and only if G is bipartite.

The motivation for Laplacian energy comes from graph energy [10,16,24,29]. The Laplacian energy of a graph G as put
forward by Gutman and Zhou (see [22]) is defined as

n

LEG) =)

i=1

2m
wi——|-
n

For its basic properties, including various lower and upper bounds, (see [11,15,14,27] and the references therein). It is easy
to see that

rLG) =) pi=2m=Y g =rtrQ(G)),
i=1 i=1

where tr is the trace.

* Corresponding author.
E-mail addresses: hilahmad1119kt@gmail.com (H.A. Ganie), pirzadasd@kashmiruniversity.ac.in (S. Pirzada).

http://dx.doi.org/10.1016/j.dam.2016.09.030
0166-218X/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: H.A. Ganie, S. Pirzada, On the bounds for signless Laplacian energy of a graph, Discrete Applied Mathematics (2016),
http://dx.doi.org/10.1016/j.dam.2016.09.030



http://dx.doi.org/10.1016/j.dam.2016.09.030
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:hilahmad1119kt@gmail.com
mailto:pirzadasd@kashmiruniversity.ac.in
http://dx.doi.org/10.1016/j.dam.2016.09.030

2 H.A. Ganie, S. Pirzada / Discrete Applied Mathematics I (11EE) HRE-1N1

In analogy to Laplacian energy, the signless Laplacian energy QE (G) of G is defined as
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Leto,1 < o < n— 1, be the number of signless Laplacian eigenvalues greater than or equal to average degree d = 27"’ We
have,
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where SH(G) = Z;’Zl gi. It can be easily seen that
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For its basic properties, including various lower and upper bounds (see [1,19] and the references therein). The line graph
Z(G) of the graph G is the graph having vertex set same as the edge set of G and where two vertices are adjacent in .#(G) if
the corresponding edges are adjacent in G.

Let I(G) be the vertex-edge incidence matrix of the graph G. For a graph G with vertex set V(G) = {vq, v2, ..., vy} and
edge set E(G) = {eq, ez, ..., em}, the (i, j)-entry of I(G) is 1, if v; is incident with e; and 0, otherwise. We know [5] that
I(GIG)' =Q(G) and I(G)'I(G) = 2In 4+ A(Z(G)) (2)

where I, is the identity matrix of order m and Q (G) is the signless Laplacian matrix of G. Since the matrices XX" and X‘X
have the same non-zero eigenvalues for any matrix X, it follows that the matrices Q (G) and 2I,, + A(#(G)) have the same
non-zero eigenvalues.

A clique is the maximum complete subgraph of the graph G. The order of the maximum clique is called clique number
of the graph G and is denoted by w. If H is a subgraph of the graph G, we denote by G \ H the graph obtained by removing
the edges of H from G. We denote the complete graph and the star on n vertices, respectively, by K, and K ,—;. For other
undefined notations and terminology from spectral graph theory, the readers are referred to [5].

The paper is organized as follows. In Section 2, we give a list of some previously known results. In Sections 3 and 4,
we present some lower and upper bounds on signless Laplacian energy QE(G) of graph G in terms of number of vertices
n, number of edges m, maximum degree A, first Zagreb index M;(G) and clique number w of the graph G. These bounds
improve some well known lower and upper bounds on QE(G) of G. As application, we obtain the bounds for the energy of
line graph .#(G) of a graph G in Section 5. Lastly in Section 6, we obtain a relation between QE (G) and the incidence energy
IE(G) of the graph G.

2. Preliminaries
We start with the following observation due to Fulton [13].

Lemma 2.1. If A and B are two real symmetric matrices of order n, then forany 1 < k < n,

k k k
D MA+B) <D KA+ Y ki(B),
i=1 i=1 i=1
where A;(X) is the ith eigenvalue of X.

The next two lemmas can be seen in [31].

Lemma 2.2. Let G be a graph of order n having maximum degree A and largest Q -eigenvalue qq. Then q; > A + 1. For a graph
G with at least one edge, equality holds if and only if G = Kq p—1.

Lemma 2.3. Let G’ = G + e be the graph obtained from G by adding a new edge e. Then the signless Laplacian eigenvalues of G
interlace the signless Laplacian eigenvalues of G, that is,

71(G) = 1(G) = q2(G) = q2(G) = - -+ = a(G) = qa(G) > 0.

Let A and § respectively be the maximum and minimum degrees of the graph G, and let 8 = %(A +8++/(A = 8)2 +4A4).
The following observation can be found in [4].

Lemma 2.4. If Gis a connected graph of order n > 3, then q,(G) > B, with equality if and only if G = Ky 5_1.
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