On the bounds for signless Laplacian energy of a graph

Hilal A. Ganie, S. Pirzada*
Department of Mathematics, University of Kashmir, Srinagar, India

A R TICLE INFO

Article history:

Received 29 March 2015
Received in revised form 14 December 2015
Accepted 22 September 2016
Available online xxxx

Keywords:

Signless Laplacian spectrum
Average degree
Clique number
Laplacian energy
Signless Laplacian energy
Zagreb index

Abstract

For a simple graph G with n-vertices, m edges and having signless Laplacian eigenvalues $q_{1}, q_{2}, \ldots, q_{n}$, the signless Laplacian energy $Q E(G)$ of the graph G is defined as $Q E(G)=$ $\sum_{i=1}^{n}\left|q_{i}-\bar{d}\right|$, where $\bar{d}=\frac{2 m}{n}$ is the average degree of G. In this paper, we obtain the lower and upper bounds for the signless Laplacian energy $Q E(G)$ in terms of clique number ω, maximum degree Δ, number of vertices n, first Zagreb index $M_{1}(G)$ and number of edges m. As an application, we obtain the bounds for the energy of line graph $\mathscr{L}(G)$ of a graph G in terms of various graph parameters. We also obtain a relation between the signless Laplacian energy $Q E(G)$ and the incidence energy $\operatorname{IE}(G)$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let $G(V, E)$ be a simple graph with n vertices and m edges having vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. The adjacency matrix $A=\left(a_{i j}\right)$ of G is a $(0,1)$-square matrix of order n whose (i, j)-entry is equal to 1 , if v_{i} is adjacent to v_{j} and equal to 0 , otherwise. Let $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the diagonal matrix associated to G, where $d_{i}=\operatorname{deg}\left(v_{i}\right)$, for all $i=1,2, \ldots, n$. The matrices $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ are respectively called Laplacian and signless Laplacian matrices and their spectrum are respectively called Laplacian spectrum (L-spectrum) and signless Laplacian spectrum (Q-spectrum) of the graph G. Both $L(G)$ and $Q(G)$ are real symmetric and positive semi-definite matrices. We let $0=\mu_{n} \leq \mu_{n-1} \leq \cdots \leq \mu_{1}$ and $0 \leq q_{n} \leq q_{n-1} \leq \cdots \leq q_{1}$ to be the L-spectrum and Q-spectrum of G, respectively. It is well known that $\mu_{n}=0$ with multiplicity equal to the number of connected components of G and $\mu_{n-1}>0$ if and only if G is connected [12]. Moreover $\mu_{i}=q_{i}$, for all $i=1,2, \ldots, n$ if and only if G is bipartite.

The motivation for Laplacian energy comes from graph energy [10,16,24,29]. The Laplacian energy of a graph G as put forward by Gutman and Zhou (see [22]) is defined as

$$
L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|
$$

For its basic properties, including various lower and upper bounds, (see [11,15,14,27] and the references therein). It is easy to see that

$$
\operatorname{tr}(L(G))=\sum_{i=1}^{n} \mu_{i}=2 m=\sum_{i=1}^{n} q_{i}=\operatorname{tr}(Q(G))
$$

where $t r$ is the trace.

[^0]In analogy to Laplacian energy, the signless Laplacian energy $Q E(G)$ of G is defined as

$$
Q E(G)=\sum_{i=1}^{n}\left|q_{i}-\frac{2 m}{n}\right|
$$

Let $\sigma, 1 \leq \sigma \leq n-1$, be the number of signless Laplacian eigenvalues greater than or equal to average degree $\bar{d}=\frac{2 m}{n}$. We have,

$$
Q E(G)=\sum_{i=1}^{n}\left|q_{i}-\frac{2 m}{n}\right|=2 S_{\sigma}^{+}(G)-\frac{4 m \sigma}{n},
$$

where $S_{\sigma}^{+}(G)=\sum_{i=1}^{\sigma} q_{i}$. It can be easily seen that

$$
\begin{equation*}
Q E(G)=2 S_{\sigma}^{+}(G)-\frac{4 m \sigma}{n}=\max _{1 \leq i \leq n-1}\left\{2 S_{i}^{+}-\frac{4 m i}{n}\right\} \tag{1}
\end{equation*}
$$

For its basic properties, including various lower and upper bounds (see [1,19] and the references therein). The line graph $\mathscr{L}(G)$ of the graph G is the graph having vertex set same as the edge set of G and where two vertices are adjacent in $\mathscr{L}(G)$ if the corresponding edges are adjacent in G.

Let $I(G)$ be the vertex-edge incidence matrix of the graph G. For a graph G with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, the (i, j)-entry of $I(G)$ is 1 , if v_{i} is incident with e_{j} and 0 , otherwise. We know [5] that

$$
\begin{equation*}
I(G) I(G)^{t}=Q(G) \quad \text { and } \quad I(G)^{t} I(G)=2 I_{m}+A(\mathscr{L}(G)) \tag{2}
\end{equation*}
$$

where I_{m} is the identity matrix of order m and $Q(G)$ is the signless Laplacian matrix of G. Since the matrices $X X^{t}$ and $X^{t} X$ have the same non-zero eigenvalues for any matrix X, it follows that the matrices $Q(G)$ and $2 I_{m}+A(\mathscr{L}(G))$ have the same non-zero eigenvalues.

A clique is the maximum complete subgraph of the graph G. The order of the maximum clique is called clique number of the graph G and is denoted by ω. If H is a subgraph of the graph G, we denote by $G \backslash H$ the graph obtained by removing the edges of H from G. We denote the complete graph and the star on n vertices, respectively, by K_{n} and $K_{1, n-1}$. For other undefined notations and terminology from spectral graph theory, the readers are referred to [5].

The paper is organized as follows. In Section 2, we give a list of some previously known results. In Sections 3 and 4, we present some lower and upper bounds on signless Laplacian energy $Q E(G)$ of graph G in terms of number of vertices n, number of edges m, maximum degree Δ, first Zagreb index $M_{1}(G)$ and clique number ω of the graph G. These bounds improve some well known lower and upper bounds on $Q E(G)$ of G. As application, we obtain the bounds for the energy of line graph $\mathscr{L}(G)$ of a graph G in Section 5 . Lastly in Section 6 , we obtain a relation between $Q E(G)$ and the incidence energy $\operatorname{IE}(G)$ of the graph G.

2. Preliminaries

We start with the following observation due to Fulton [13].
Lemma 2.1. If A and B are two real symmetric matrices of order n, then for any $1 \leq k \leq n$,

$$
\sum_{i=1}^{k} \lambda_{i}(A+B) \leq \sum_{i=1}^{k} \lambda_{i}(A)+\sum_{i=1}^{k} \lambda_{i}(B)
$$

where $\lambda_{i}(X)$ is the ith eigenvalue of X.
The next two lemmas can be seen in [31].
Lemma 2.2. Let G be a graph of order n having maximum degree Δ and largest Q-eigenvalue q_{1}. Then $q_{1} \geq \Delta+1$. For a graph G with at least one edge, equality holds if and only if $G \cong K_{1, n-1}$.

Lemma 2.3. Let $G^{\prime}=G+e$ be the graph obtained from G by adding a new edge e. Then the signless Laplacian eigenvalues of G interlace the signless Laplacian eigenvalues of G^{\prime}, that is,

$$
q_{1}\left(G^{\prime}\right) \geq q_{1}(G) \geq q_{2}\left(G^{\prime}\right) \geq q_{2}(G) \geq \cdots \geq q_{n}\left(G^{\prime}\right) \geq q_{n}(G) \geq 0
$$

Let Δ and δ respectively be the maximum and minimum degrees of the graph G, and let $\beta=\frac{1}{2}\left(\Delta+\delta+\sqrt{(\Delta-\delta)^{2}+4 \Delta}\right)$. The following observation can be found in [4].

Lemma 2.4. If G is a connected graph of order $n \geq 3$, then $q_{1}(G) \geq \beta$, with equality if and only if $G \cong K_{1, n-1}$.

https://daneshyari.com/en/article/4949553

Download Persian Version:
https://daneshyari.com/article/4949553

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hilahmad1119kt@gmail.com (H.A. Ganie), pirzadasd@kashmiruniversity.ac.in (S. Pirzada).

