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a b s t r a c t

Manyhard graphproblems, such asHamiltonianCycle, becomeFPTwhenparameterizedby
treewidth, a parameter that is bounded only on sparse graphs. When parameterized by the
more general parameter clique-width, Hamiltonian Cycle becomes W[1]-hard, as shown
by Fomin et al. (2010). Sæther and Telle address this problem in their paper (Sæther and
Telle, 2016) by introducing a new parameter, split-matching-width, which lies between
treewidth and clique-width in terms of generality. They show that even though graphs
of restricted split-matching-width might be dense, solving problems such as Hamiltonian
Cycle can be done in FPT time.

Recently, it was shown that Hamiltonian Cycle parameterized by treewidth is in EPT
(Bodlaender et al., 2013; Fomin et al., 2014), meaning it can be solved in nO(1)2O(k)-time.
In this paper, using tools from Fomin et al. (2014), we show that also parameterized by
split-matching-width Hamiltonian Cycle is EPT. To the best of our knowledge, this is the
first EPT algorithm for any ‘‘globally constrained’’ graph problem parameterized by a non-
trivial and non-sparse structural parameter. To accomplish this, we also give an algorithm
constructing a branch decomposition approximating the minimum split-matching-width
towithin a constant factor. Combined, these results show that the algorithms in Sæther and
Telle (2016) for Edge Dominating Set, Chromatic Number andMax Cut all can be improved.
In fact, using our new approximation algorithm, under the Exponential Time Hypothesis,
the Hamiltonian Cycle algorithm of this paper, and the three algorithms for MaxCut, Edge
Dominating Set, and Chromatic Number, are asymptotically optimal.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The problem of finding a Hamiltonian Cycle in a graph – a simple cycle covering all the vertices of the graph – is NP-
complete [10]. One way to handle an NP-hard problem is by investigating its parameterized complexity, for various choices
of parameter. Unlike a lot of other NP-hard graph problems, Hamiltonian Cycle does not have a natural parameter, since the
solution size is the number of vertices in the input graph. Instead, we may look at structural parameterizations of the input
graph, for instance its treewidth or clique-width.

A lot of NP-hard graph problems become fixed parameter tractable (FPT, solvable in f (k)nO(1)-time for parameter-value
k) when parameterized by treewidth. Many examples of problems that can be checked locally, e.g., Independent Set, Vertex
Cover, Dominating Set and so on, are even EPT when parameterized by treewidth, meaning that the problems can be solved
in time 2O(k)nO(1) [4] (also referred to as having a single exponential algorithm). When parameterized by clique-width,
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hardly any of these problems are known to be EPT. For instance, Dominating Set has recently been shown solvable in time
2O(k log k)nO(1) for clique-width k [12], but this is still not EPT.

For problems that have a global constraint, like Steiner Tree, Hamiltonian Cycle and Feedback Vertex Set, EPT algorithms
parameterized by treewidthwere for a long time not known. For example, the asymptotically best algorithm forHamiltonian
Cycle was for a long time the folklore nO(1)kO(k) time algorithm, resulting in a belief that graph problems with a global
requirement may not have EPT algorithms. Recently, however, a breakthrough paper by Cygan et al. [3] gave a randomized
EPT algorithm for Hamiltonian Cycle, and other problemswith global constraints, when parameterized by treewidth. Shortly
after this, Bodlaender et al. [1] and then Fomin et al. [6], also found deterministic EPT algorithms for Hamiltonian Cycle
parameterized by treewidth. Both the papers [1,6] are general, in the sense that they provide a framework for solving many
problems. Graph classes of bounded treewidth are all sparse, so onemaywonder if using either of these new frameworkswill
help in finding similar EPT results for globally constrained problems like Hamiltonian Cycle for a parameter bounded also
on non-sparse graph classes. The classical structural graph parameter bounded also on some non-sparse graphs is clique-
width. Unfortunately, it is unlikely that such a result exists for clique-width, as Hamiltonian Cycle has been shown to be
W-hard when parameterized by clique-width [5]. So, we must focus on a non-sparse parameter which is less general than
clique-width. Examples of some such parameters are modular-width, shrub-depth, neighbourhood diversity, twin-cover,
and the newly introduced split-matching-width (see Fig. 1).

In the recent paper [7] Gajarský et al. give an FPT algorithm (but not EPT) for Hamiltonian Cycle parameterized by
modular-width, and show W-hardness when parameterized by shrub-depth. Split-matching-width is a new parameter
introduced by Sæther and Telle [13] for which Hamiltonian Cycle is FPT [13]. Unlike modular-width, split-matching-width
generalizes treewidth, so it is a good candidate for applying the frameworkused for treewidth (see Section 2 for the definition
of split-matching-width).

In this paper, we will show that using the framework of [6] we can solve Hamiltonian Cycle in time 2O(k)nO(1) for
parameter k being split-matching-width. The approach will be similar to that of [13] in the sense that it consists of two
parts; (1) given a graph G, finding a branch decomposition of low split-matching-width, and then (2) solving Hamiltonian
Cycle on G with a runtime depending on the split-matching-width of the computed branch decomposition. We will in this
paper improve on the results from [13] by showing the following two theorems that when combined results in an EPT
algorithm for Hamiltonian Cycle parameterized by split-matching-width.

Theorem 1. Given a graph G of split-matching-width less than k, in nO(1)2O(k) time we can find a branch decomposition of split-
matching-width less than 16k.

Theorem 2. Given a graph G and a branch decomposition of split-matching-width k, we can decide if G has a Hamiltonian Cycle
in time nO(1)2O(k).

Another result of Theorem 1 is that we can improve the runtime of the algorithms for solving Edge Dominating Set,
Chromatic Number, and Max Cut parameterized by split-matching-width described in [13]. In fact, under the Exponential
Time Hypothesis the asymptotic runtimes for Max Cut, Hamiltonian Cycle, Chromatic Number and Edge Dominating Set
become optimal [8,9]. (I.e., no nO(1)2o(k) algorithm exists.)

This paper is organized as follows: In Section 2, we give the necessary definitions and background needed for the rest of
the paper. In Section 3 we prove Theorem 2. We start the section by stating one of the powerful results found in [6], then
use the rest of the section to adapt this result to be used in the same type of dynamic programming scheme as found in [13].
In Section 4 we show how to prove Theorem 1. We give an idea of how a graph can be decomposed into so called prime
graphs, and how a branch decomposition for the original graph can be made out of combining decompositions of these
prime graphs. The rest of the section then shows how a modified version of mm-width and sm-width, which we call lifted
mm-width/sm-width, will help us improve the approximation of [13] by better tying the width of these prime graphs to the
width of the original graph than what was done in [13]. The paper ends with Section 5 where we give a short summary.

2. Preliminaries and terminology

Graph and set preliminaries

We work on simple undirected graphs G = (V , E) and denote the set of vertices and set of edges of a graph G by V (G)
and E(G), respectively. We use n to denote the number of vertices of the graph in question. For an edge between vertices
u and v, we simply write uv. For a path P , by writing uPv we mean that the endpoints of P are u and v. For a graph G and
subset A ⊆ V (G), we denote by G[A] the subgraph of G induced by A. That is, the vertex set V (G[A]) of G[A] is A and the edge
set is E(G[A]) = {uv ∈ E(G) : u, v ∈ A}. For disjoint sets A, B ⊆ V (G), we denote by G[A, B] the bipartite subgraph of G
induced by the pair (A, B). That is V (G[A, B]) = A ∪ B and E(G[A, B]) = {uv ∈ E(G) : u ∈ A, v ∈ B}. For a set of vertices
S ⊆ V (G), we denote by NG(S) all the vertices in V (G) \ S adjacent to S. We omit the subscript G in NG(S) when it is clear
from context. For a single vertex v, we write NG(v) instead of NG({v}). To contract an edge uv means to replace the vertices
u and v by a new vertex vuv adjacent to exactly the same vertices as u and v combined. For a set A ⊆ V (G), when V (G) is
clear from context, we write A to mean the set V (G) \ A. For a graph G and subsets A, B, C ⊆ V (G), we say that C separates
A and B if there are no paths from A \ C to B \ C in G[C].



Download	English	Version:

https://daneshyari.com/en/article/4949561

Download	Persian	Version:

https://daneshyari.com/article/4949561

Daneshyari.com

https://daneshyari.com/en/article/4949561
https://daneshyari.com/article/4949561
https://daneshyari.com/

