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a b s t r a c t

Zero forcing is an iterative graph coloring process whereby a colored vertex with a single
uncolored neighbor forces that neighbor to be colored. It is NP-hard to find a minimum
zero forcing set – a smallest set of initially colored vertices which forces the entire graph
to be colored. We show that the problem remains NP-hard when the initially colored set
induces a connected subgraph. We also give structural results about the connected zero
forcing sets of a graph related to the graph’s density, separating sets, and certain induced
subgraphs. Finally, we give efficient algorithms to find minimum connected zero forcing
sets of unicyclic graphs and variants of cactus and block graphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Zero forcing is an iterative graph coloring process where at each time step, a colored vertex with a single uncolored
neighbor forces that neighbor to become colored; the zero forcing number of a graph is the cardinality of the smallest
set of initially colored vertices which causes the entire graph to be colored. Zero forcing was introduced in a 2006 AIM
workshop on linear algebra and graph theory [2] and was used to bound the maximum nullity (equivalently, the minimum
rank) of the family of symmetric matrices associated with a graph. The zero forcing number is generally more attainable
than the maximum nullity, which makes it a valuable tool in the study of this algebraic parameter. Zero forcing was also
independently studied in quantum physics [15] and theoretical computer science [56]; subsequently, applications of zero
forcing in logic circuits [16], power network monitoring [35,58], and modeling the spread of diseases and information
in social networks [19,24] have also been explored. Since computing the zero forcing number is NP-complete [1,56], the
majority of research in this area has focused on developing structural results on zero forcing sets [2,25,36,49], bounding the
zero forcing number [22,32,38], relating the zero forcing number to other graph parameters [6,9,53], and characterizing the
zero forcing numbers of graphs with special structure [27,44,57].

A natural graph theoretic variant of zero forcing is obtained by requiring every set of initially colored vertices to induce
a connected subgraph. This variant of zero forcing, called connected zero forcing, can further the understanding of the zero
forcing process and the underlying structure of zero forcing sets in general. Requiring a zero forcing set to be connected also
has meaningful interpretations in many of the applications and physical phenomena modeled by zero forcing. For example,
in the application of zero forcing to power network monitoring,1 there are often significant costs associated with the
high-speed communication infrastructure between the phasemeasurement units (PMUs) and the processing stations which
collect and manage PMU data; there may also be costs associated with dispatching a technician to regulate or maintain the
PMUs and related equipment. In a scenario where these costs outweigh the production costs of the PMUs, an electric power
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1 See [9] for a more thorough introduction to the power domination problem and its relation to zero forcing.
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company may seek to place all PMUs in a compact, connected region in the network in order to decrease the costs incurred
by processing stations, communication infrastructure, and technician travel times. The connected zero forcing number is an
upper bound on the number of PMUs required to monitor the network in this scenario, and can be used as a technical tool
in the derivation of certain results about connected power domination. As another example, it is often the case that ideas
or diseases originate from a single connected source in a social network or geographic region; thus, connected zero forcing
may be better suited than zero forcing to model propagation in those scenarios.

As one of the main results of this paper, we establish the NP-completeness of connected zero forcing. Thus, as with
zero forcing, this problem cannot be solved efficiently in general, but one can obtain structural results, bounds, and
characterizations for specific graphs. To this end,we present several structural results and technical lemmas about connected
zero forcing, such as the effects of certain vertex and edge operations on the connected zero forcing number, and properties
of vertices which are contained in every connected zero forcing set. We also give two lower bounds on the connected zero
forcing number in terms of certain separating sets and induced subgraphs in the graph, and we characterize the connected
zero forcing numbers of trees, unicyclic graphs, and some variants of cactus and block graphs. Other theoretical and
computational aspects of connected zero forcing have been explored in [12–14,21,40]; some of these results are generalized
in the present paper.

Numerous other variants of zero forcing have also been studied, including positive semidefinite zero forcing [5,26,54], Zq-
forcing [17], skew zero forcing [3], signed zero forcing [33], fractional zero forcing [37], and k-forcing [4,19,42]. These variants
are typically obtained by modifying the color change rule or by adding certain restrictions to the structure of a zero forcing
set; they are often designed to bound other linear algebraic parameters, or introduced as natural graph theoretic extensions
of zero forcing. The connected variants of other graph problems, including connected vertex cover [18,41], connected
domination [20,23,30,50] and connected power domination [29], have also been extensively studied. Imposing connectivity
often fundamentally changes the nature of a problem, including its complexity, structural properties, and applications. For
example, while both domination and connected domination are NP-complete [31], the latter is generally harder to solve
exactly. This disparity has been attributed to the non-locality of the connected domination problem, since exact algorithms
are often unable to capture global properties like connectivity [30]. In some contrast, computational experiments in [13] have
shown that algorithms for connected zero forcing are faster, and able to handle larger graphs, than the state-of-the-art zero
forcing algorithms. The connected zero forcing number can also be efficiently computed in graphs with polynomially many
connected induced subgraphs; this graph class includes arbitrary subdivisions of fixed graphs and graphs with bounded
maximum leaf numbers [43].

The remainder of this paper is organized as follows. In the next section,we recall somegraph theoretic notions, specifically
those related to zero forcing. In Section 3, we present novel structural results about connected zero forcing, as well as
some technical lemmas which are used in the sequel. In Section 4, we prove that connected zero forcing is NP-complete.
In Section 5, we give closed formulas for the connected zero forcing numbers of several families of tree-like graphs. We
conclude with some final remarks and open questions in Section 6.

2. Preliminaries

2.1. Graph theoretic notions

A graph G = (V , E) consists of a vertex set V and an edge set E of two-element subsets of V . The order and size of G are
denoted by n = |V | andm = |E|, respectively. Two vertices v, w ∈ V are adjacent, or neighbors, if {v, w} ∈ E. If v is adjacent
to w, we write v ∼ w; otherwise, we write v ̸∼ w. The neighborhood of v ∈ V is the set of all vertices which are adjacent to
v, denoted N(v;G); the degree of v ∈ V is defined as d(v;G) = |N(v;G)|. The minimum degree and maximum degree of G
are denoted by δ(G) and ∆(G), respectively. The dependence of these parameters on G can be omitted when it is clear from
the context. Given S ⊂ V , the induced subgraph G[S] is the subgraph of G whose vertex set is S and whose edge set consists
of all edges of G which have both endpoints in S. The number of connected components of G will be denoted by c(G); an
isomorphism between graphs G1 and G2 will be denoted by G1 ≃ G2.

A leaf, or pendant, is a vertex with degree 1. A cut vertex is a vertex which, when removed, increases the number of
connected components in G. Similarly, a cut edge is an edge which, when removed, increases the number of components of
G. A biconnected component, or block, of G is a maximal subgraph of Gwhich has no cut vertices. An outer block is a block with
at most one cut vertex. A unicyclic graph is a graph with exactly one cycle. A cactus graph is a graph in which every block is a
cycle or a cut edge, and a block graph is a graph in which every block is a clique. For other graph theoretic terminology and
definitions, we refer the reader to [11].

2.2. Zero forcing

Given a graph G = (V , E) and a set S ⊂ V of initially colored vertices, the color change rule dictates that at each integer-
valued time step, a colored vertex uwith a single uncolored neighbor v forces that neighbor to become colored; such a force
is denoted u → v. The derived set of S is the set of colored vertices obtained after the color change rule is applied until no
new vertex can be forced; it can be shown that the derived set of S is uniquely determined by S (see [2]). A zero forcing set is a
set whose derived set is all of V ; the zero forcing number of G, denoted Z(G), is the minimum cardinality of a zero forcing set.
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