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a b s t r a c t

A total dominating set in a graph G is a set S of vertices of G such that every vertex in G is
adjacent to a vertex of S. We study cubic graphs whose vertex set can be partitioned into
two total dominating sets. There are infinitely many examples of connected cubic graphs
that do not have such a vertex partition. In this paper, we show that the class of claw-free
cubic graphs has such a partition. For an integer k at least 3, a graph is k-chordal if it does
not have an induced cycle of length more than k. Chordal graphs coincide with 3-chordal
graphs. We observe that for k ≥ 6, not every graph in the class of k-chordal, connected,
cubic graphs has two vertex disjoint total dominating sets. We prove that the vertex set of
every 5-chordal, connected, cubic graph can be partitioned into two total dominating sets.
As a consequence of this result, we observe that this property also holds for a connected,
cubic graph that is chordal or 4-chordal. We also prove that cubic graphs containing a
diamond as a subgraph can be partitioned into two total dominating sets.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A dominating set in a graph G is a set S of vertices of G such that every vertex in V (G) \ S is adjacent to at least one vertex
in S. A total dominating set, abbreviated as a TD-set, of a graph G with no isolated vertex is a set S of vertices of G such that
every vertex in V (G) is adjacent to at least one vertex in S. The literature on the subject of domination parameters in graphs
up to the year 1997 has been surveyed and detailed in the two books [9,10]. Total domination is now well studied in graph
theory. For a recent book on the topic, see [15]. A survey of total domination in graphs can also be found in [11].

For an integer k at least 3, a graph G is k-chordal if it does not have an induced cycle of lengthmore than k. Chordal graphs
coincide with 3-chordal graphs, and graphs of small chordality were studied in [2,4,5,19]. We say that a graph is F-free if it
does not contain F as an induced subgraph. In particular, if F = K1,3, then we say that the graph is claw-free. An excellent
survey of claw-free graphs has been written by Flandrin, Faudree, and Ryjáček [8].

A simple yet fundamental observation in domination theory made by Ore [21] is that every graph of minimum degree
at least one contains two disjoint dominating sets. Thus, the vertex set of every graph without isolated vertices can be
partitioned into two dominating sets. In contrast to that, Zelinka [25,26] showed that no minimum degree is sufficient to
guarantee the existence of two disjoint total dominating sets.

Our aim in this paper is to study 3-regular graphs, also called cubic graphs, whose vertex set can be partitioned into two
total dominating sets. There are infinitelymany examples of connected cubic graphs that do not have such a vertex partition.
We show that the class of 5-chordal, cubic graphs and the class of claw-free, cubic graphs have such a partition.

* Corresponding author.
E-mail addresses:wjdesormeaux@gmail.com (W.J. Desormeaux), haynes@etsu.edu (T.W. Haynes), mahenning@uj.ac.za (M.A. Henning).

http://dx.doi.org/10.1016/j.dam.2017.01.032
0166-218X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2017.01.032
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2017.01.032&domain=pdf
mailto:wjdesormeaux@gmail.com
mailto:haynes@etsu.edu
mailto:mahenning@uj.ac.za
http://dx.doi.org/10.1016/j.dam.2017.01.032


W.J. Desormeaux et al. / Discrete Applied Mathematics 223 (2017) 52–63 53

1.1. Notation

Let G be a graph with vertex set V (G) and edge set E(G). The open neighborhood of a vertex v ∈ V (G) is NG(v) = {u ∈

V (G) | uv ∈ E(G)} and its closed neighborhood is the set NG[v] = {v} ∪ NG(v). Given a subset S ⊆ V (G) and a vertex v ∈ S, the
S-external private neighborhood of v in G is the set epnG(v, S) = {w ∈ V (G) \ S | NG(w) ∩ S = {v}}. The subgraph induced
by a set of vertices S in G is denoted by G[S]. We use the standard notation [k] = {1, 2, . . . , k}. The complete graph on four
vertices minus one edge is called a diamond.

A block of a graph G is a maximal connected subgraph of G which has no cut-vertex of its own. The blocks of G partition
its edge set. If a connected graph contains a single block, we call the graph itself a block or a 2-connected graph. A block
containing exactly one cut-vertex is called an end-block. We note that every graph that contains a cut-vertex contains an
end-block.

Let v be a vertex of a digraphD. The outdegree d+(v) of v is the number of arcs leaving v; that is, d+(v) is the number of arcs
of the form (v, u). The indegree d−(v) of v is the number of arcs entering v. The digraph D is k-regular if d+(v) = d−(v) = k
for every vertex v ∈ V . By a cycle in D, we mean a directed cycle. An even cycle in D is a cycle of even length.

A hypergraph H is a finite set V (H) of elements, called vertices, together with a finite multiset E(H) of arbitrary subsets of
V , called hyperedges or simply edges. The hypergraph H is k-uniform if every edge of H has size k. The degree of a vertex v

in H is the number of edges of H which contain v. We denote the maximum degree among the vertices of H by ∆(H). The
hypergraph H is k-regular if every vertex has degree k in H .

Two vertices x and y of a hypergraph H are adjacent if there is an edge e of H such that {x, y} ⊆ e. Further, x and y
are connected if there is a sequence x = v0, v1, v2, . . . , vk = y of vertices of H in which vi−1 is adjacent to vi for i ∈ [k].
A connected hypergraph is a hypergraph in which every pair of vertices is connected. A component of a hypergraph H is a
maximal connected subhypergraph of H .

The open neighborhood hypergraph ONH(G) of a graph G is the hypergraph whose vertex set is V (G) and whose edges
consist of the openneighborhoods of the vertices inG. Thus, ifH = ONH(G), thenV (H) = V (G) and E(H) = {NG(x) | x ∈ V (G)}.

A subset T of vertices in a hypergraph H is a transversal in H if T has a nonempty intersection with every edge of H .
The transversal number τ (H) of H is the minimum size of a transversal in H . It is well-known (see [15]) that the transversal
number of the open neighborhood hypergraph of a graph is precisely the total domination number of the graph; that is, for
a graph G, we have γt (G) = τ (HG).

We define a partition of the vertex set of a graph into two disjoint TD-sets to be a TDTD-partition of the graph. If G has a
TDTD-partition, we say that G is a TDTD-graph.

2. Main results

In this paper, we prove three main results. Our first result provides a local property for a connected, cubic graph to be a
TDTD-graph. A proof of Theorem 1 is presented in Section 3.

Theorem 1. Every connected cubic graph containing a diamond has a TDTD-partition.

Our next two results provide global properties for a connected, cubic graph to be a TDTD-graph. The following result
shows that the class of 5-chordal cubic graphs are TDTD-graphs. We show later (see Observation 8) that for k ≥ 6, not every
graph in the class of connected, k-chordal, cubic graphs is a TDTD-graph. A proof of Theorem 2 is presented in Section 4.

Theorem 2. Every connected, 5-chordal, cubic graph has a TDTD-partition.

Our third result shows that the class of claw-free, cubic graphs are TDTD-graphs. A proof of Theorem 3 is presented in
Section 5.

Theorem 3. Every connected, claw-free, cubic graph has a TDTD-partition.

2.1. Motivation

A hypergraph H is bipartite if its vertex set can be partitioned into two sets such that every hyperedge intersects both
partite sets. Equivalently,H is bipartite if it is 2-colorable; that is, there is a 2-coloring of the vertices such that each hyperedge
contains two vertices of distinct colors. In other words, there must be no monochromatic hyperedge. The problem of
2-colorings of hypergraphs has attracted much interest over the past few decades, including important contributions by
Seymour [22] and Thomassen [24]. Recent results on 2-colorings of hypergraphs can be found in [16,18] and elsewhere. We
remark that the Lovász Local Lemma was devised by Erdös and Lovász in 1975 (see [7]) precisely to tackle the problem of
2-colorings of hypergraphs. There is a surprising connection between disjoint total dominating sets in graphs, even cycles
in digraphs, and 2-coloring of hypergraphs.
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