Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

A sufficient condition for planar graphs with maximum degree 6 to be totally 8-colorable

Enqiang Zhu*, Jin Xu

School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, China

ARTICLE INFO

Article history: Received 14 January 2016 Received in revised form 28 December 2016 Accepted 20 January 2017 Available online 9 March 2017

Keywords: Planar graph Total coloring 4-fan

ABSTRACT

It is known that Total Coloring Conjecture (TCC) was verified for planar graphs with maximum degree $\Delta \neq 6$. In this paper, we prove that TCC holds for planar graphs *G* with $\Delta(G) = 6$, if *G* does not contain any subgraph isomorphic to a 4-fan.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected, and for the terminologies and notations not defined here we follow [2]. For any graph *G*, we denote by V(G), E(G), $\Delta(G)$ and $\delta(G)$ the vertex set, the edge set, the maximum degree and the minimum degree of *G*, respectively. For any vertex v in *G*, a vertex $u \in V(G)$ is said to be a neighbor of v if $uv \in E(G)$. We use $N_G(v)$ to denote the set of neighbors of v. The degree of v in *G*, denoted by $d_G(v)$, is the number of neighbors of v in *G*, i.e. $d_G(v) = |N_G(v)|$. A *k*-vertex or a k^+ -vertex is a vertex of degree *k* or at least *k*. A *k*-neighbor of a vertex v is a neighbor of v with degree *k*. A *k*-cycle is a cycle of length *k*, and a 3-cycle is usually called a *triangle*. An (x, y, z)-triangle is a triangle whose vertices have degrees x, y and z.

A partial total k-coloring f of a graph G (regarding to S) is a coloring using k colors such that no two adjacent or incident elements in S get the same color, where $S \subseteq (V(G) \cup E(G))$. Particularly, when $S = V(G) \cup E(G)$, f is called a total k-coloring of G. A graph is totally k-colorable if it admits a total k-coloring. The total chromatic number of a graph G, denoted by $\chi_t(G)$, is the smallest integer k such that G has a total k-coloring.

It is clear that $\chi_t(G) \ge \Delta(G) + 1$. As for the upper bound, Behzad [1] and Vizing [9] proposed independently the famous Total Coloring Conjecture (TCC), claiming that $\chi_t(G) \le \Delta(G) + 2$ for every simple graph *G*. So far TCC has been confirmed for graphs with $\Delta \le 5$ [5], and for planar graphs with $\Delta \ge 7$ [3,4,7]. Therefore, the only open case for planar graphs is $\Delta = 6$. In [8], Sun et al. proved that every planar graph *G* with maximum degree 6 is totally 8-colorable if no two triangles in *G* share a common edge (which implies that every vertex *v* in *G* is incident with at most $\lfloor \frac{d_G(v)}{2} \rfloor$ triangles). In this paper, we give a stronger statement as follows.

Theorem 1.1. Let *G* be a planar graph of maximum degree 6. If *G* does not contain any subgraph that is isomorphic to a 4-fan, as shown in Fig. 1, then *G* is totally 8-colorable.

http://dx.doi.org/10.1016/j.dam.2017.01.036 0166-218X/© 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China. *E-mail address:* zhuenqiang@pku.edu.cn (E. Zhu).

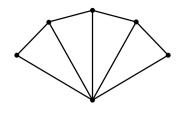


Fig. 1. A 4-fan.

The proof of this theorem generally runs as follows: We first explore the properties of a minimal counterexample (Section 2), by which we will obtain a contradiction via a discharging method (Section 3).

For convenience, let us first introduce the following notations: Let f be a partial total k-coloring of G regarding to $S, S \subseteq (V(G) \cup E(G))$. We use $\{1, 2, ..., k\}$ to denote the color set with k colors. The set of colors appearing on the edges incident with a vertex $v \in V(G)$ is denoted by $C_f(v)$, and $\overline{C}_f(v) = \{1, 2, ..., k\} \setminus C_f(v)$. Moreover, when $v \in S$, we denote by $C_f[v] = C_f(v) \cup \{f(v)\}$, and $\overline{C}_f[v] = \{1, 2, ..., k\} \setminus C_f[v]$. For any $X \subseteq S$, let $f(X) = \{f(x) : x \in X\}$. In what follows, we assume that a planar graph G is always embedded in the plane, and denote by F(G) the set of faces of G. The degree of a face $f \in F(G)$, denoted by $d_G(f)$, is the number of edges incident with f, where each cut-edge is counted twice. A face of degree k is called a k-face.

2. Properties of a minimal counterexample

In this section, we investigate properties of a minimal counterexample, namely a planar graph with minimum sum of the number of edges and the number of vertices, which goes against Theorem 1.1. Let *H* be such a counterexample, then naturally *H* satisfies that:

- (1) *H* is a planar graph of maximum degree 6.
- (2) *H* does not contain any subgraph that is isomorphic to a 4-fan.
- (3) *H* is not totally 8-colorable.

Moreover, since every planar graph with $\Delta \leq 5$ is totally 7-colorable [5] and every subgraph of *H* has property (2), we have the following property (4):

(4) Every proper subgraph of *H* is totally 8-colorable.

Apart from the above basic properties, we now deduce some structural properties of *H*.

Lemma 2.1. *H* contains no edge uv with $min\{d_H(u), d_H(v)\} \le 3$ and $d_H(u) + d_H(v) \le 8$.

Proof. Suppose that *H* contains an edge uv with $d_H(u) \le 3$ and $d_H(u) + d_H(v) \le 8$. By the minimality of $H, H \setminus \{uv\}$ has a total 8-coloring *f*. Erase the color on *u*, and then color uv and *u* in turn. Since the number of colors that we cannot use is at most 2 + 5 = 7 for uv and 3 + 3 = 6 for *u*, it follows that *f* can be extended to a total 8-coloring of *H*. This contradicts the choice of *H* as a counterexample. \Box

According to Lemma 2.1, we can easily obtain the following result.

Corollary 2.2. We have $\delta(H) \ge 3$, and for each $uv \in E(H)$, if $d_H(u) = 3$, then $d_H(v) = 6$.

The proofs of the following results, Lemmas 2.3–2.5, are analogous to those in [6] (lemmas 7, 8 and 9), we include them here for the convenience of readers.

Lemma 2.3. *H* has no triangle incident with a 3-vertex.

Proof. Suppose that *H* contains a triangle uvwu with $d_H(u) = 3$. Then, $d_H(v) = d_H(w) = 6$ by Lemma 2.1. Let *f* be a total 8-coloring of $H' = H \setminus \{uv\}$ after erasing the color of *u*. We will prove that *f* can be extended to a total 8-coloring of *H*, and a contradiction. Since *u* is a 3-vertex, it is sufficient to show that *uv* can be properly colored based on *f*. If $C_f(u) \cup C_f[v] \neq \{1, 2, ..., 8\}$, then *uv* can be colored with at least one available color in $\{1, 2, ..., 8\} \setminus (C_f(u) \cup C_f[v])$. If $C_f(u) \cup C_f[v] = \{1, 2, ..., 8\}$, then we without loss of generality assume that $C_f(u) = \{1, 2\}, C_f[v] = \{3, 4, 5, 6, 7, 8\}$, f(uw) = 2 and f(vw) = 3. Since *w* is a 6-vertex, it follows that $|\overline{C}_f[w]| = 1$. When $\overline{C}_f[w] = 1$, we can recolor *vw* with 1 and color *uv* with 3; When $\overline{C}_f[w] \neq 1$, we have $\overline{C}_f[w] \in \{4, 5, 6, 7, 8\}$. Then, we can recolor *uw* with $\overline{C}_f[w]$ and color *uv* with 2. \Box

Lemma 2.4. *H* does not contain any triangle incident with two 4-vertices.

Download English Version:

https://daneshyari.com/en/article/4949604

Download Persian Version:

https://daneshyari.com/article/4949604

Daneshyari.com