A sufficient condition for planar graphs with maximum degree 6 to be totally 8-colorable

Enqiang Zhu*, Jin Xu
School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, China

A R TICLE IN F O

Article history:

Received 14 January 2016
Received in revised form 28 December 2016
Accepted 20 January 2017
Available online 9 March 2017

Keywords:

Planar graph
Total coloring
4-fan

Abstract

It is known that Total Coloring Conjecture (TCC) was verified for planar graphs with maximum degree $\Delta \neq 6$. In this paper, we prove that TCC holds for planar graphs G with $\Delta(G)=6$, if G does not contain any subgraph isomorphic to a 4 -fan.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected, and for the terminologies and notations not defined here we follow [2]. For any graph G, we denote by $V(G), E(G), \Delta(G)$ and $\delta(G)$ the vertex set, the edge set, the maximum degree and the minimum degree of G, respectively. For any vertex v in G, a vertex $u \in V(G)$ is said to be a neighbor of v if $u v \in E(G)$. We use $N_{G}(v)$ to denote the set of neighbors of v. The degree of v in G, denoted by $d_{G}(v)$, is the number of neighbors of v in G, i.e. $d_{G}(v)=\left|N_{G}(v)\right|$. A k-vertex or a k^{+}-vertex is a vertex of degree k or at least k. A k-neighbor of a vertex v is a neighbor of v with degree k. A k-cycle is a cycle of length k, and a 3 -cycle is usually called a triangle. An (x, y, z)-triangle is a triangle whose vertices have degrees x, y and z.

A partial total k-coloring f of a graph G (regarding to S) is a coloring using k colors such that no two adjacent or incident elements in S get the same color, where $S \subseteq(V(G) \cup E(G))$. Particularly, when $S=V(G) \cup E(G), f$ is called a total k-coloring of G. A graph is totally k-colorable if it admits a total k-coloring. The total chromatic number of a graph G, denoted by $\chi_{t}(G)$, is the smallest integer k such that G has a total k-coloring.

It is clear that $\chi_{t}(G) \geq \Delta(G)+1$. As for the upper bound, Behzad [1] and Vizing [9] proposed independently the famous Total Coloring Conjecture (TCC), claiming that $\chi_{t}(G) \leq \Delta(G)+2$ for every simple graph G. So far TCC has been confirmed for graphs with $\Delta \leq 5$ [5], and for planar graphs with $\Delta \geq 7$ [3,4,7]. Therefore, the only open case for planar graphs is $\Delta=6$. In [8], Sun et al. proved that every planar graph G with maximum degree 6 is totally 8 -colorable if no two triangles in G share a common edge (which implies that every vertex v in G is incident with at most $\left\lfloor\frac{d_{G}(v)}{2}\right\rfloor$ triangles). In this paper, we give a stronger statement as follows.

Theorem 1.1. Let G be a planar graph of maximum degree 6 . If G does not contain any subgraph that is isomorphic to a 4 -fan, as shown in Fig. 1, then G is totally 8-colorable.

[^0]

Fig. 1. A 4-fan.

The proof of this theorem generally runs as follows: We first explore the properties of a minimal counterexample (Section 2), by which we will obtain a contradiction via a discharging method (Section 3).

For convenience, let us first introduce the following notations: Let f be a partial total k-coloring of G regarding to $S, S \subseteq(V(G) \cup E(G))$. We use $\{1,2, \ldots, k\}$ to denote the color set with k colors. The set of colors appearing on the edges incident with a vertex $v \in V(G)$ is denoted by $C_{f}(v)$, and $\bar{C}_{f}(v)=\{1,2, \ldots, k\} \backslash C_{f}(v)$. Moreover, when $v \in S$, we denote by $C_{f}[v]=C_{f}(v) \cup\{f(v)\}$, and $\bar{C}_{f}[v]=\{1,2, \ldots, k\} \backslash C_{f}[v]$. For any $X \subseteq S$, let $f(X)=\{f(x): x \in X\}$. In what follows, we assume that a planar graph G is always embedded in the plane, and denote by $F(G)$ the set of faces of G. The degree of a face $f \in F(G)$, denoted by $d_{G}(f)$, is the number of edges incident with f, where each cut-edge is counted twice. A face of degree k is called a k-face. A face of degree at least k is a k^{+}-face.

2. Properties of a minimal counterexample

In this section, we investigate properties of a minimal counterexample, namely a planar graph with minimum sum of the number of edges and the number of vertices, which goes against Theorem 1.1. Let H be such a counterexample, then naturally H satisfies that:
(1) H is a planar graph of maximum degree 6 .
(2) H does not contain any subgraph that is isomorphic to a 4 -fan.
(3) H is not totally 8 -colorable.

Moreover, since every planar graph with $\Delta \leq 5$ is totally 7-colorable [5] and every subgraph of H has property (2), we have the following property (4):
(4) Every proper subgraph of H is totally 8-colorable.

Apart from the above basic properties, we now deduce some structural properties of H.

Lemma 2.1. H contains no edge $u v$ with $\min \left\{d_{H}(u), d_{H}(v)\right\} \leq 3$ and $d_{H}(u)+d_{H}(v) \leq 8$.
Proof. Suppose that H contains an edge $u v$ with $d_{H}(u) \leq 3$ and $d_{H}(u)+d_{H}(v) \leq 8$. By the minimality of $H, H \backslash\{u v\}$ has a total 8-coloring f. Erase the color on u, and then color $u v$ and u in turn. Since the number of colors that we cannot use is at most $2+5=7$ for $u v$ and $3+3=6$ for u, it follows that f can be extended to a total 8 -coloring of H. This contradicts the choice of H as a counterexample.

According to Lemma 2.1, we can easily obtain the following result.

Corollary 2.2. We have $\delta(H) \geq 3$, and for each $u v \in E(H)$, if $d_{H}(u)=3$, then $d_{H}(v)=6$.
The proofs of the following results, Lemmas 2.3-2.5, are analogous to those in [6] (lemmas 7, 8 and 9), we include them here for the convenience of readers.

Lemma 2.3. H has no triangle incident with a 3-vertex.
Proof. Suppose that H contains a triangle $u v w u$ with $d_{H}(u)=3$. Then, $d_{H}(v)=d_{H}(w)=6$ by Lemma 2.1. Let f be a total 8-coloring of $H^{\prime}=H \backslash\{u v\}$ after erasing the color of u. We will prove that f can be extended to a total 8-coloring of H, and a contradiction. Since u is a 3-vertex, it is sufficient to show that $u v$ can be properly colored based on f. If $C_{f}(u) \cup C_{f}[v] \neq\{1,2, \ldots, 8\}$, then $u v$ can be colored with at least one available color in $\{1,2, \ldots, 8\} \backslash\left(C_{f}(u) \cup C_{f}[v]\right)$. If $C_{f}(u) \cup C_{f}[v]=\{1,2, \ldots, 8\}$, then we without loss of generality assume that $C_{f}(u)=\{1,2\}, C_{f}[v]=\{3,4,5,6,7,8\}$, $f(u w)=2$ and $f(v w)=3$. Since w is a 6-vertex, it follows that $\left|\bar{C}_{f}[w]\right|=1$. When $\bar{C}_{f}[w]=1$, we can recolor $v w$ with 1 and color $u v$ with 3 ; When $\bar{C}_{f}[w] \neq 1$, we have $\bar{C}_{f}[w] \in\{4,5,6,7,8\}$. Then, we can recolor $u w$ with $\bar{C}_{f}[w]$ and color $u v$ with 2.

Lemma 2.4. H does not contain any triangle incident with two 4-vertices.

https://daneshyari.com/en/article/4949604

Download Persian Version:

https://daneshyari.com/article/4949604

Daneshyari.com

[^0]: * Corresponding author at: School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China.

 E-mail address: zhuenqiang@pku.edu.cn (E. Zhu).

