ARTICLE IN PRESS

Discrete Applied Mathematics [(]]] .

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On partitions of graphs under degree constraints

Muhuo Liu^{a,b}, Baogang Xu^{c,*}

^a Department of Mathematics, College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China

^b College of Mathematics and Statistics, Shenzhen University, Shenzhen, 518060, China

^c Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China

ARTICLE INFO

Article history: Received 4 October 2014 Received in revised form 20 March 2017 Accepted 6 April 2017 Available online xxxx

Keywords: Partition $(K_4 - e)$ -free graphs Subgraph Degree

ABSTRACT

Let *s*, *t* be two integers, and let g(s, t) denote the minimum integer such that the vertex set of a graph of minimum degree at least g(s, t) can be partitioned into two nonempty sets which induce subgraphs of minimum degree at least *s* and *t*, respectively. In this paper, it is shown that, (1) for positive integers *s* and $t, g(s, t) \le s + t$ on $(K_4 - e)$ -free graphs except K_3 , and (2) for integers $s \ge 2$ and $t \ge 2$, $g(s, t) \le s + t - 1$ on triangle-free graphs in which no two quadrilaterals share edges. Our first conclusion generalizes a result of Kaneko (1998), and the second generalizes a result of Diwan (2000).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let *G* be a graph, let *X* be a subset of *V*(*G*). We use *G*[*X*] to denote the subgraph of *G* induced by *X*. For a vertex $x \in X$, we use $N_X(x)$ to denote the neighbor set of *x* in *X*, let $N_X[x] = N_X(x) \cup \{x\}$, and let $d_X(x) = |N_X(x)|$ (when X = V(G), we simplify $N_X(x)$, $N_X[x]$ and $d_X(x)$ as N(x), N[x] and d(x), respectively). Let *A* and *B* be two nonempty disjoint subsets of *V*(*G*). If $A \cup B = V(G)$, then we call (*A*, *B*) a partition of *V*(*G*). We also say that *V*(*G*) is partitioned into *A* and *B* if (*A*, *B*) is a partition.

In 1972, Mader [6] showed that every graph of minimum degree at least 4k contains a k-connected subgraph. In 1982, Györi (see [4,8]) proposed a problem as follows: for given positive integers s and t, is there an integer f(s, t) such that the vertex set of every f(s, t)-connected graph can be partitioned into two sets S and T which induce subgraphs of connectivity at least s and t respectively? Thomassen [8], and Szegedy independently (see [4]), proved the existence of the function f(s, t), and Hajnal [4] improved the bound to $f(s, t) \le 4s + 4t - 13$. In his proof, Thomassen proved a degree version of Györi's problem. He showed essentially that for positive integers s and t, there is an integer g(s, t) such that the vertex set of every graph G with minimum degree at least g(s, t) can be partitioned into S and T which induce subgraphs of minimum degree at least s and t, respectively. The complete graph K_{s+t+1} shows that $g(s, t) \ge s + t + 1$. Then, Thomassen conjectured that g(s, t) = s + t + 1.

In [7], Stiebitz confirmed Thomassen's conjecture with an elegant argument. In fact, Stiebitz proved a result stronger than the conjecture. Let \mathbb{N} denote the set of nonnegative integers.

Theorem 1.1 ([7]). Let *G* be a graph and *a*, $b : V(G) \mapsto \mathbb{N}$ two functions. Suppose that $d(x) \ge a(x) + b(x) + 1$ for each vertex *x* of *G*. Then, there exists a partition of V(G) into *A* and *B* such that

- (1) $d_A(x) \ge a(x)$ for each $x \in A$, and
- (2) $d_B(y) \ge b(y)$ for each $y \in B$.

http://dx.doi.org/10.1016/j.dam.2017.04.007 0166-218X/© 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail addresses: liumuhuo@163.com (M. Liu), baogxu@njnu.edu.cn (B. Xu).

2

ARTICLE IN PRESS

M. Liu, B. Xu / Discrete Applied Mathematics 🛚 (💵 🖬)

Let (A, B) be a partition of V(G), and let $a, b : V(G) \mapsto \mathbb{N}$ be two functions. We say that (A, B) is an (a, b)-feasible partition if $d_A(x) \ge a(x)$ for each $x \in A$ and $d_B(y) \ge b(y)$ for each $y \in B$. Theorem 1.1 says that G admits an (a, b)-feasible partition if $d(x) \ge a(x) + b(x) + 1$ for each vertex x of G. Stiebitz [7] further asked a question if there are some pair of positive integers s and t and a triangle-free graph G of minimum degree s + t such that G has no vertex disjoint subgraphs G_1 and G_2 with minimum degree at least s and t, respectively. In another words, is it true that, for any positive integers s and $t, g(s, t) \le s + t$ on triangle-free graphs? The complete bipartite graph $K_{s+t,s+t}$ shows that $g(s, t) \ge s + t$ on triangle-free graphs, and every connected regular triangle-free graph requires s and t to be positive in order to have $g(s, t) \le s + t$. Kaneko [5] answered Stiebitz's problem with a similar argument as that used in [7].

Theorem 1.2 ([5]). Let s and t be two positive integers. Then, $g(s, t) \le s + t$ on triangle-free graphs.

As Stiebitz pointed out in his paper [7], K_{s+t+1} does not admit (s, t)-feasible partitions for any pair $s \ge 1$ and $t \ge 1$, and the icosahedron is 5-regular and does not admit (4, 1)-feasible partitions. Note that triangles appear densely in both K_{s+t+1} and the icosahedron (every set of three vertices of K_{s+t+1} spans a triangle, and every edge of the icosahedron is in two triangles). One may ask naturally whether the bound $g(s, t) \le s+t$ holds on graphs in which the triangles are not dense. This is indeed the case. A cycle of length 4 is referred to as a *quadrilateral*, and $K_4 - e$ is the graph obtained from K_4 by removing one edge. A graph is said to be $(K_4 - e)$ -free if it does not contain $K_4 - e$ as a subgraph (here $K_4 - e$ may not be induced, a $(K_4 - e)$ -free graph is also K_4 -free. The similar happens when we talk no two quadrilaterals sharing an edge later). We show that $g(s, t) \le s + t$ on $(K_4 - e)$ -free graphs except K_3 .

Theorem 1.3. Let *G* be a $(K_4 - e)$ -free graph with at least four vertices, and $a, b : V(G) \mapsto \mathbb{N} \setminus \{0\}$ two functions. If $d(x) \ge a(x) + b(x)$ for each vertex *x* of *G*, then *G* admits an (a, b)-feasible partition.

The requirement $(K_4 - e)$ -free is necessary in Theorem 1.3 as evidenced by the icosahedron. Another example is $K_4 - e$ itself. Let $G = K_4 - e$, and let $a, b : V(G) \mapsto \mathbb{N} \setminus \{0\}$ be two functions such that a(x) = d(x) - 1 and b(x) = 1 for each vertex $x \in V(G)$. Then G has no (a, b)-feasible partition.

As usual, the length of a shortest cycle in a graph G is called the *girth* of G. In 2000, Diwan considered the problem that whether g(s, t) can be reduced further by forbidding the existence of triangles and quadrilaterals in the graphs, and he succeeded in showing that

Theorem 1.4 ([2]). Let $s \ge 2$ and $t \ge 2$ be two integers. Then, $g(s, t) \le s + t - 1$ on the graphs of girth at least five.

The cycle of length n ($n \ge 5$) shows that one cannot expect to omit the requirement of $s \ge 2$ and $t \ge 2$ by simply increasing the girth of graphs. In 2004, Gerber and Kobler generalized Theorem 1.4 and proved the following analogue of Theorem 1.1. Bazgan, Tuza and Vanderpooten [1] presented three polynomial time algorithms to find (a, b)-feasible partitions satisfying Theorems 1.1, 1.2 and 1.5, respectively.

Theorem 1.5 ([3]). Let *G* be a graph of girth at least five, and $a, b : V(G) \mapsto \mathbb{N} \setminus \{0, 1\}$ two functions. If $d(x) \ge a(x) + b(x) - 1$ for each vertex *x* of *G*, then *G* admits an (a, b)-feasible partition.

Our next result generalizes Theorem 1.5 to triangle-free graphs that may contain quadrilaterals.

Theorem 1.6. Let *G* be a triangle-free graph in which no two quadrilaterals share edges, and $a, b : V(G) \mapsto \mathbb{N} \setminus \{0, 1\}$ two functions. If $d(x) \ge a(x) + b(x) - 1$ for each vertex *x* of *G*, then *G* admits an (a, b)-feasible partition.

The complete bipartite graph $K_{3,3}$ shows that the restriction on the sparsity of quadrilaterals cannot be relaxed too much, since it does not admit (2, 2)-feasible partitions. We are not sure whether Theorem 1.6 can be improved further. It would be nice if someone can strengthen Theorem 1.6 to graphs with neither triangle nor $K_{2,3}$. Furthermore, up to our best knowledge, the following problem due to Diwan [2] is still open: whether the bound s + t - 1 in Theorem 1.4 can be improved further for graphs with larger girth.

As a direct corollary of Theorems 1.3 and 1.6, we have

Corollary 1.1. Let *s* and *t* be two positive integers. Then, $g(s, t) \le s + t$ on $(K_4 - e)$ -free graphs except K_3 , and $g(s, t) \le s + t - 1$ on triangle-free graphs in which no two quadrilaterals share edges if $s \ge 2$ and $t \ge 2$.

Before proving our theorems, we still need to introduce some notations that are also used in [1-3,5,7]. Let *G* be a graph, and let *S* be a subset of *V*(*G*). Recall that for each vertex *x* of *S*, $d_S(x)$ denotes the degree of *x* in *G*[*S*]. Let *y* be a vertex in $V(G) \setminus S$. We use $e_G(y, S)$ to denote the number of edges joining *y* to *S*.

Let $a, b : V(G) \mapsto \mathbb{N}$ be two functions. We say that S is *a*-satisfactory if $d_S(x) \ge a(x)$ for each vertex x of S, and say that S is *a*-degenerate if for each nonempty subset S' of S there exists a vertex $x \in S'$ such that $d_{S'}(x) \le a(x)$. By an (a, b)-degenerate partition we mean a partition (A, B) of V(G) such that A is *a*-degenerate and B is *b*-degenerate.

As in [3,7,8], the weight $\omega(A, B)$ of an (a, b)-degenerate partition (A, B) is defined by

$$\omega(A, B) = |E(G[A])| + |E(G[B])| + \sum_{u \in A} b(u) + \sum_{v \in B} a(v).$$

Please cite this article in press as: M. Liu, B. Xu, On partitions of graphs under degree constraints, Discrete Applied Mathematics (2017), http://dx.doi.org/10.1016/j.dam.2017.04.007.

Download English Version:

https://daneshyari.com/en/article/4949617

Download Persian Version:

https://daneshyari.com/article/4949617

Daneshyari.com