On partitions of graphs under degree constraints

Muhuo Liu ${ }^{\text {a,b }}$, Baogang Xu ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Mathematics, College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
${ }^{\text {b }}$ College of Mathematics and Statistics, Shenzhen University, Shenzhen, 518060, China
${ }^{\text {c }}$ Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China

A R TICLE IN F O

Article history:

Received 4 October 2014
Received in revised form 20 March 2017
Accepted 6 April 2017
Available online xxxx

Keywords:

Partition
($K_{4}-e$)-free graphs
Subgraph
Degree

Abstract

Let s, t be two integers, and let $g(s, t)$ denote the minimum integer such that the vertex set of a graph of minimum degree at least $g(s, t)$ can be partitioned into two nonempty sets which induce subgraphs of minimum degree at least s and t, respectively. In this paper, it is shown that, (1) for positive integers s and $t, g(s, t) \leq s+t$ on ($\left.K_{4}-e\right)$-free graphs except K_{3}, and (2) for integers $s \geq 2$ and $t \geq 2, g(s, t) \leq s+t-1$ on triangle-free graphs in which no two quadrilaterals share edges. Our first conclusion generalizes a result of Kaneko (1998), and the second generalizes a result of Diwan (2000).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let G be a graph, let X be a subset of $V(G)$. We use $G[X]$ to denote the subgraph of G induced by X. For a vertex $x \in X$, we use $N_{X}(x)$ to denote the neighbor set of x in X, let $N_{X}[x]=N_{X}(x) \cup\{x\}$, and let $d_{X}(x)=\left|N_{X}(x)\right|$ (when $X=V(G)$, we simplify $N_{X}(x), N_{X}[x]$ and $d_{X}(x)$ as $N(x), N[x]$ and $d(x)$, respectively). Let A and B be two nonempty disjoint subsets of $V(G)$. If $A \cup B=V(G)$, then we call (A, B) a partition of $V(G)$. We also say that $V(G)$ is partitioned into A and B if (A, B) is a partition.

In 1972, Mader [6] showed that every graph of minimum degree at least $4 k$ contains a k-connected subgraph. In 1982, Györi (see [4,8]) proposed a problem as follows: for given positive integers s and t, is there an integer $f(s, t)$ such that the vertex set of every $f(s, t)$-connected graph can be partitioned into two sets S and T which induce subgraphs of connectivity at least s and t respectively? Thomassen [8], and Szegedy independently (see [4]), proved the existence of the function $f(s, t$), and Hajnal [4] improved the bound to $f(s, t) \leq 4 s+4 t-13$. In his proof, Thomassen proved a degree version of Györi's problem. He showed essentially that for positive integers s and t, there is an integer $g(s, t)$ such that the vertex set of every graph G with minimum degree at least $g(s, t)$ can be partitioned into S and T which induce subgraphs of minimum degree at least s and t, respectively. The complete graph K_{s+t+1} shows that $g(s, t) \geq s+t+1$. Then, Thomassen conjectured that $g(s, t)=s+t+1$.

In [7], Stiebitz confirmed Thomassen's conjecture with an elegant argument. In fact, Stiebitz proved a result stronger than the conjecture. Let \mathbb{N} denote the set of nonnegative integers.

Theorem $1.1([7])$. Let G be a graph and $a, b: V(G) \longmapsto \mathbb{N}$ two functions. Suppose that $d(x) \geq a(x)+b(x)+1$ for each vertex x of G. Then, there exists a partition of $V(G)$ into A and B such that
(1) $d_{A}(x) \geq a(x)$ for each $x \in A$, and
(2) $d_{B}(y) \geq b(y)$ for each $y \in B$.

[^0]Let (A, B) be a partition of $V(G)$, and let $a, b: V(G) \longmapsto \mathbb{N}$ be two functions. We say that (A, B) is an (a, b)-feasible partition if $d_{A}(x) \geq a(x)$ for each $x \in A$ and $d_{B}(y) \geq b(y)$ for each $y \in B$. Theorem 1.1 says that G admits an (a, b)-feasible partition if $d(x) \geq a(x)+b(x)+1$ for each vertex x of G. Stiebitz [7] further asked a question if there are some pair of positive integers s and t and a triangle-free graph G of minimum degree $s+t$ such that G has no vertex disjoint subgraphs G_{1} and G_{2} with minimum degree at least s and t, respectively. In another words, is it true that, for any positive integers s and $t, g(s, t) \leq s+t$ on triangle-free graphs? The complete bipartite graph $K_{s+t, s+t}$ shows that $g(s, t) \geq s+t$ on triangle-free graphs, and every connected regular triangle-free graph requires s and t to be positive in order to have $g(s, t) \leq s+t$. Kaneko [5] answered Stiebitz's problem with a similar argument as that used in [7].

Theorem 1.2 ([5]). Let s and t be two positive integers. Then, $g(s, t) \leq s+t$ on triangle-free graphs.
As Stiebitz pointed out in his paper [7], K_{s+t+1} does not admit (s, t)-feasible partitions for any pair $s \geq 1$ and $t \geq 1$, and the icosahedron is 5 -regular and does not admit (4, 1)-feasible partitions. Note that triangles appear densely in both K_{s+t+1} and the icosahedron (every set of three vertices of K_{s+t+1} spans a triangle, and every edge of the icosahedron is in two triangles). One may ask naturally whether the bound $g(s, t) \leq s+t$ holds on graphs in which the triangles are not dense. This is indeed the case. A cycle of length 4 is referred to as a quadrilateral, and $K_{4}-e$ is the graph obtained from K_{4} by removing one edge. A graph is said to be ($K_{4}-e$)-free if it does not contain $K_{4}-e$ as a subgraph (here $K_{4}-e$ may not be induced, a ($K_{4}-e$)-free graph is also K_{4}-free. The similar happens when we talk no two quadrilaterals sharing an edge later). We show that $g(s, t) \leq s+t$ on $\left(K_{4}-e\right)$-free graphs except K_{3}.

Theorem 1.3. Let G be $a\left(K_{4}-e\right)$-free graph with at least four vertices, and $a, b: V(G) \longmapsto \mathbb{N} \backslash\{0\}$ two functions. If $d(x) \geq a(x)+b(x)$ for each vertex x of G, then G admits an (a, b)-feasible partition.

The requirement $\left(K_{4}-e\right)$-free is necessary in Theorem 1.3 as evidenced by the icosahedron. Another example is $K_{4}-e$ itself. Let $G=K_{4}-e$, and let $a, b: V(G) \longmapsto \mathbb{N} \backslash\{0\}$ be two functions such that $a(x)=d(x)-1$ and $b(x)=1$ for each vertex $x \in V(G)$. Then G has no (a, b)-feasible partition.

As usual, the length of a shortest cycle in a graph G is called the girth of G. In 2000, Diwan considered the problem that whether $g(s, t)$ can be reduced further by forbidding the existence of triangles and quadrilaterals in the graphs, and he succeeded in showing that

Theorem 1.4 ([2]). Let $s \geq 2$ and $t \geq 2$ be two integers. Then, $g(s, t) \leq s+t-1$ on the graphs of girth at least five.
The cycle of length $n(n \geq 5)$ shows that one cannot expect to omit the requirement of $s \geq 2$ and $t \geq 2$ by simply increasing the girth of graphs. In 2004, Gerber and Kobler generalized Theorem 1.4 and proved the following analogue of Theorem 1.1. Bazgan, Tuza and Vanderpooten [1] presented three polynomial time algorithms to find (a, b)-feasible partitions satisfying Theorems 1.1, 1.2 and 1.5 , respectively.

Theorem 1.5 ([3]). Let G be a graph of girth at least five, and $a, b: V(G) \longmapsto \mathbb{N} \backslash\{0,1\}$ two functions. If $d(x) \geq a(x)+b(x)-1$ for each vertex x of G, then G admits an (a, b)-feasible partition.

Our next result generalizes Theorem 1.5 to triangle-free graphs that may contain quadrilaterals.
Theorem 1.6. Let G be a triangle-free graph in which no two quadrilaterals share edges, and $a, b: V(G) \longmapsto \mathbb{N} \backslash\{0,1\}$ two functions. If $d(x) \geq a(x)+b(x)-1$ for each vertex x of G, then G admits an (a, b)-feasible partition.

The complete bipartite graph $K_{3,3}$ shows that the restriction on the sparsity of quadrilaterals cannot be relaxed too much, since it does not admit (2, 2)-feasible partitions. We are not sure whether Theorem 1.6 can be improved further. It would be nice if someone can strengthen Theorem 1.6 to graphs with neither triangle nor $K_{2,3}$. Furthermore, up to our best knowledge, the following problem due to Diwan [2] is still open: whether the bound $s+t-1$ in Theorem 1.4 can be improved further for graphs with larger girth.

As a direct corollary of Theorems 1.3 and 1.6 , we have
Corollary 1.1. Let s and t be two positive integers. Then, $g(s, t) \leq s+t$ on $\left(K_{4}-e\right)$-free graphs except K_{3}, and $g(s, t) \leq s+t-1$ on triangle-free graphs in which no two quadrilaterals share edges if $s \geq 2$ and $t \geq 2$.

Before proving our theorems, we still need to introduce some notations that are also used in [1-3,5,7]. Let G be a graph, and let S be a subset of $V(G)$. Recall that for each vertex x of $S, d_{S}(x)$ denotes the degree of x in $G[S]$. Let y be a vertex in $V(G) \backslash S$. We use $e_{G}(y, S)$ to denote the number of edges joining y to S.

Let $a, b: V(G) \longmapsto \mathbb{N}$ be two functions. We say that S is a-satisfactory if $d_{S}(x) \geq a(x)$ for each vertex x of S, and say that S is a-degenerate if for each nonempty subset S^{\prime} of S there exists a vertex $x \in S^{\prime}$ such that $d_{S^{\prime}}(x) \leq a(x)$. By an (a, b)-degenerate partition we mean a partition (A, B) of $V(G)$ such that A is a-degenerate and B is b-degenerate.

As in $[3,7,8]$, the weight $\omega(A, B)$ of an (a, b)-degenerate partition (A, B) is defined by

$$
\omega(A, B)=|E(G[A])|+|E(G[B])|+\sum_{u \in A} b(u)+\sum_{v \in B} a(v) .
$$

https://daneshyari.com/en/article/4949617

Download Persian Version:
https://daneshyari.com/article/4949617

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: liumuhuo@163.com (M. Liu), baogxu@njnu.edu.cn (B. Xu).
 http://dx.doi.org/10.1016/j.dam.2017.04.007
 0166-218X/© 2017 Elsevier B.V. All rights reserved.

