
Applied Soft Computing 34 (2015) 463–484

Contents lists available at ScienceDirect

Applied  Soft  Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Particle  swarm  algorithm  with  adaptive  constraint  handling  and
integrated  surrogate  model  for  the  management  of  petroleum  fields

Mauro  Sebastián  Innocentea,∗,  Silvana  Maria  Bastos  Afonsob, Johann  Sienza,
Helen  Margaret  Daviesa

a Civil & Computational Engineering Centre, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
b Dept. Eng. Civil, Universidade Federal de Pernambuco, Recife, PE, Brazil

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 29 January 2014
Received in revised form 17 May  2015
Accepted 18 May  2015
Available online 28 May  2015

Keywords:
Adaptive constraint handling
Global search
Particle swarm
Reservoir simulation
Surrogate-based optimization
Waterflooding management

a  b  s  t  r  a  c  t

This  paper  deals  with  the development  of effective  techniques  to automatically  obtain  the  optimum
management  of  petroleum  fields  aiming  to increase  the  oil  production  during  a given  concession  period
of exploration.  The  optimization  formulations  of such  a  problem  turn out to be  highly  multimodal,  and
may  involve  constraints.  In this  paper,  we develop  a robust  particle  swarm  algorithm  coupled  with  a
novel adaptive  constraint-handling  technique  to search  for the  global  optimum  of  these  formulations.
However,  this  is a population-based  method,  which  therefore  requires  a high  number  of  evaluations
of  an  objective  function.  Since  the  performance  evaluation  of  a given  management  scheme  requires  a
computationally  expensive  high-fidelity  simulation,  it is  not  practicable  to use  it directly  to guide  the
search.  In order  to overcome  this  drawback,  a Kriging  surrogate  model  is  used,  which  is  trained  offline
via  evaluations  of a High-Fidelity  simulator  on  a number  of sample  points.  The  optimizer  then  seeks the
optimum  of the  surrogate  model.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The search for the optimum management scheme that max-
imizes oil production in petroleum fields is one of the major
challenges in petroleum engineering. In this context, reservoir sim-
ulations and optimization methods are extensively used. Thus,
Zhao et al. [1] use a Simulated Annealing based optimizer to deter-
mine the optimum steam injection pressure and steam-solvent
flooding strategy in a thin heavy oil reservoir in the absence and
presence of a bottom water zone.

Since the net present value (NPV) is related to the production
profit, it is commonly used in reservoir engineering manage-
ment as the objective function [1–4]. Waterflooding (WF) is the
most widespread method used to improve oil recovery after pri-
mary depletion, i.e. after exhausting the reservoir’s natural energy.
The method consists of injecting water to raise the pressure and
increase oil production. Horowitz et al. [2] propose four formu-
lations of the WF management problem leading to optimization
problems of different complexities, using the NPV as the function to
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be maximized subject to constraints at platform’s total rates. They
use a sequential approximate optimization (SAO) procedure with a
sequential quadratic programming (SQP) local optimizer. This is a
strategy proposed in [5], whose main feature is the sub-division of
the original problem into a sequence of sub-problems to be solved
in a sub-region of the original space named trust region (TR). Surro-
gate models to be called by the optimizer are built in the TR domain,
which is updated as the search progresses [5–7]. This technique is
also used by other researchers in the WF  optimization context [3].

The concession period is usually subdivided into a number of
control cycles with fixed switching times, with the well rates in
each cycle set as design variables. Oliveira and Reynolds [4] present
a hierarchical procedure to determine appropriate number and
duration of control cycles. The well-by-well approach is based on
criteria for refining/coarsening of control cycles based on gradients
of the objective function and on differences between consecutive
well controls at each well. If gradients are not available, only the
latter criterion is applicable, in which case the merging potential
may  be affected if optimal controls tend to be rough.

While some of the formulations in [2] result in highly multi-
modal objective functions, the solutions found by the SQP optimizer
are very sensitive to the initial guess. Hence we  propose here to
use a global search algorithm called particle swarm optimization
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(PSO). The latter is composed of particles with different settings
aimed at displaying complementary capabilities, and a so-called
forward topology with time-increasing connectivity for the social
network. In addition, since the plain PSO algorithm does not
handle constraints on its own, an adaptive constraint-handling
technique (CHT) is developed and integrated into the optimizer.
However, the fact that PSO is a population-based method also
implies that it requires a high number of evaluations of the objec-
tive function. Given that the performance of a management scheme
cannot be evaluated explicitly but by means of a computation-
ally expensive high-fidelity (HF) simulation, it is not feasible to
use it directly to guide the search. Surrogate-based optimization
has proved useful to the optimization of computationally expen-
sive simulation-based models in the aerospace, automotive and oil
industries [8]. Therefore, it is proposed in this paper that a Kriging
surrogate model (KM) [9,10] be used, which is trained offline via
evaluations of a HF commercial simulator (IMEX [11]) on a number
of sample points. The selection for this technique is based on results
from previous work in which several procedures for the surrogate
construction of the NPV function were tested [2,12].

The WF management problem is of high importance in
petroleum engineering, whose objective is to increase productiv-
ity in petroleum fields using the rates of injector and producer
wells as control parameters, thereby maximizing their economic
return. In this paper, we show that a particle swarm (PS) algorithm
with adaptive constraint handling and a static Kriging model can
be combined to obtain near optimal results without the hassle of
extensive numerical trial-and-error testing and tuning on a case-
by-case basis. It is important to note that no tuning is carried out
in this paper.

The layout of the paper is as follows: Section 2 presents the WF
problem general formulation and four alternatives according to the
operational conditions; Section 3 offers a discussion on surrogate
models, in particular on Kriging approximations; Section 4 presents
an overview of the PSO method, emphasizing the features that are
used in our code; Section 5 presents the proposed PSO algorithm,
including the formulation and settings of the particles’ trajectory
recurrence relation and neighborhood topology, and the develop-
ment of a novel adaptive CHT and termination conditions; Section
6 presents the proposed integrated tool (PIT), consisting of the tan-
dem Kriging-PSO for the global surrogate-based optimization of the
WF problem; finally, results from computational experiments are
offered in Section 7, a discussion of results is carried out in Section
8, whilst conclusions and future work are presented in Section 9.

2. Waterflooding problem formulation

The general formulation for the WF  problem can be written as
shown in Eq. (1):

Maximize NPV = f (q) =
nt∑

t=1
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]
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where q =
[
qT
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]T
is the vector of well rates for all control

cycles; qt =
[
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]T
is the vector of well rates at control

Table 1
Characteristics of the four formulations of the WF problem. Equality constraints
are not transferred to the formulation of the optimization problems but reduce
dimensionality instead.

Problem Dimensionality (n) Constraint type

FCO-FT (nP + nI − 2) · nt Side, equality
NFCO-FT (nP + nI) · nt Side, inequality
FCO-VT (nP + nI − 2) · nt + nt − 1 Side, equality, inequality
NFCO-VT (nP + nI) · nt + nt − 1 Side, inequality

cycle t; qp,t is the liquid rate of well p at control cycle t; nt is the total
number of control cycles; and nw is the total number of wells. In
the objective function equation, d is the discount rate; �t is the time
at the end of control cycle t; and F(qt) is the cash flow at control
cycle t, which represents the oil revenue minus the cost of water
injection and water production. This is given by Eq. (2):

F(qt) = ��t ·
[∑

p∈P

(ro · qo
p,t − cw · qw

p,t) −
∑
p∈I

(cwi · qp,t)

]
(2)

where ��t is the time length of control cycle t; P and I distinguish
producer from injector wells; qo

p,t and qw
p,t are the average oil and

water rates at production well p at control cycle t; ro is the oil price;
and cw and cwi are the costs of producing and injecting water. In Eq.
(1), Ql,max is the maximum allowed total production liquid rate and
Qinj,max is the maximum allowed total injection rate of the field.
Superscripts l and u refer to the lower and upper bounds of design
variables, respectively. Superscripts o and w denote oil and water
phases, respectively. The last constraint in Eq. (1) requires that, for
all cycles, the total injection rate belong to an interval that goes
from the total production rate to ı times this value, where ı ≥ 1
is the over injection parameter. The commonly used approach to
these problems is to subdivide the concession period into a num-
ber of control cycles, nt, with fixed switching times. The design
variables are the well rates in each control cycle. Four alternative
formulations derived from Eq. (1) are proposed in [2], where they
combine different platform operational conditions with and with-
out the inclusion of the switching times of the control cycles as
design variables. The operational conditions considered are:

Full capacity operation (FCO), in which the sum of both pro-
duction and injection rates are at maximum platform’s total rates.
Under this assumption, the last equation presented in Eq. (1) is
automatically satisfied. These equality constraints actually simplify
the problem, as they result in variables expressed in terms of others,
thus reducing the dimensionality of the search-space and removing
those constraints from the formulation of the optimization prob-
lem.

Non-full capacity operation (NFCO), in which the total injection
and production rates may  vary in order to increase the NPV, while
the voidage replacement type constraints (last equation in Eq. (1))
are kept.

In this paper, situations where the control cycles are deter-
mined by the user are referred to as fixed time (FT) whereas those
where the control cycles comprise design variables are referred to
as variable time (VT). The cases resulting from the combination of
operational conditions and types of switching times are depicted
in Table 1. For each case, the number of design variables (n) and
the type of constraints involved are shown. In the table, nP is the
number of producer wells and nI is the number of injector wells.
The mathematical formulation of each of these cases in Table 1 can
be found in [2].

3. Surrogate models

Surrogate models are built to provide smooth functions accu-
rate enough to capture the general trends of the HF model at a
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