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a b s t r a c t

The anti-forcing number of a perfect matching M of a graph G is the minimal number of
edges not in M whose removal to make M as a unique perfect matching of the result-
ing graph. The set of anti-forcing numbers of all perfect matchings of G is the anti-forcing
spectrum of G. In this paper, we characterize the plane elementary bipartite graph whose
minimum anti-forcing number is one. We show that the maximum anti-forcing number
of a graph is at most its cyclomatic number. In particular, we characterize the graphs with
the maximum anti-forcing number achieving the upper bound, such extremal graphs are a
class of plane bipartite graphs. Finally, we determine the anti-forcing spectrum of an even
polygonal chain in linear time.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We only consider finite and simple graphs. Let G be a graph with vertex set V (G) and edge set E(G). A perfect matching or
1-factor of G is a set of disjoint edges which covers all vertices of G. A perfect matching of a graph coincides with a Kekulé
structure in organic chemistry and a dimer in statistic physics.

The concept of ‘‘forcing’’ has been used inmany research fields in graph theory and combinatorics [3,17]. It appeared first
in a perfect matching M of a graph G due to Harary et al. [9]: If a subset S of M is not contained in other perfect matchings
of G, then we say S forces the perfect matching M , in other words, S is called a forcing set of M . The minimum cardinality
over all forcing sets of M is called the forcing number of M . The roots of those concepts can be found in an earlier chemical
literature due to Randić and Klein [12], under the name of the innate degree of freedom of a Kekulé structure, which plays
an important role in the resonance theory in chemistry. In 1990s Zhang and Li [26] and Hansen and Zheng [8] determined
independently the hexagonal systemswith a forcing edge. Afterwards Zhang and Zhang [28] characterized plane elementary
bipartite graphs with a forcing edge. For more researches on matching forcing problems, see [1,2,10,11,18,19,22,27,25].

Vukičević and Trinajstić [20] introduced the anti-forcing number of a graph G as the smallest number of edges whose
removal results in a subgraphwith a unique perfect matching, denoted by af (G). So a graph G has a unique perfect matching
if and only if its anti-forcing number is zero. An edge e of a graph G is called an anti-forcing edge if G− e has a unique perfect
matching. As early as 1997 Li [14] showed that the hexagonal systems with an anti-forcing edge (under the name ‘‘forcing
single edge’’) are truncated parallelograms. Deng [4] gave a linear time algorithm to compute the anti-forcing number of ben-
zenoid chains. Yang et al. [23] showed that a fullerenehas the anti-forcingnumber at least four. For otherworks, see [21,5,24].

Recently, Lei et al. [13] defined the anti-forcing number of a perfect matching M of a graph G as the minimal number of
edges not in M whose removal to make M as a single perfect matching of the resulting graph, denoted by af (G,M). By this
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definition, af (G) is the smallest anti-forcing number over all perfect matchings of G, called theminimum anti-forcing number
of G. Also let Af (G) denote the largest anti-forcing number over all perfect matchings of G, called the maximum anti-forcing
number of G. They also showed that the maximum anti-forcing number of a hexagonal system equals its Fries number. The
present authors [6,7] considered the anti-forcing spectrum Specaf (G) as the set of anti-forcing numbers of perfect matchings
in G.

LetM be a perfect matching of a graph G. A subset S ⊆ E(G)\M is called an anti-forcing set ofM ifM is the unique perfect
matching of G − S. A cycle C of G is called anM-alternating cycle if the edges of C appear alternately inM and E(G) \ M . If C
is an M-alternating cycle of G, then the symmetric difference M△C := (M − C) ∪ (C − M) is another perfect matching of
G. In this case a cycle is always regarded as its edge set.

Theorem 1.1 ([13]). An edge set S of a graph G is an anti-forcing set of a perfect matching M of G if and only if S contains at
least one edge of every M-alternating cycle of G.

Let M be a perfect matching of a graph G. A set A of M-alternating cycles of G is called a compatible M-alternating set if
any two members of A either are disjoint or intersect only at edges in M . Let c ′(M) denote the cardinality of a maximum
compatible M-alternating set of G. By Theorem 1.1, we have af (G,M) ≥ c ′(M). For plane bipartite graphs, the equality
holds.

Theorem 1.2 ([13]). Let G be a plane bipartite graph with a perfect matching M. Then af (G,M) = c ′(M).

Throughout this paper all the bipartite graphs are given a proper black and white coloring: any two adjacent vertices
receive different colors. An edge of a graph G is allowed if it belongs to a perfect matching of G and forbidden otherwise. G
is said to be elementary if all its allowed edges form a connected subgraph of G. It is well-known that a connected bipartite
graph is elementary if and only if each edge is allowed [16].

An elementary bipartite graph has the so-called ‘‘bipartite ear decomposition’’. Let x be an edge. Join the end vertices of
x by a path P1 of odd length (the so-called ‘‘first ear’’). We proceed inductively to build a sequence of bipartite graphs as
follows: If Gr−1 = x+ P1 + P2 +· · ·+ Pr−1 has already been constructed, add the rth ear Pr (a path of odd length) by joining
any two vertices in different colors of Gr−1 such that Pr has no other vertices in common with Gr−1. The decomposition
Gr = x + P1 + P2 + · · · + Pr will be called a bipartite ear decomposition of Gr .

Theorem 1.3 ([15]). A bipartite graph is elementary if and only if it has a bipartite ear decomposition.

Abipartite ear decompositionG = x+P1+P2+· · ·+Pr can be represented by a sequence of graphs (G0,G1, . . . ,Gr(= G)),
where G0 = x and Gi = Gi−1 + Pi for 1 ≤ i ≤ r . We can see that the number of ears equals |E(G)| − |V (G)| + 1, i.e., the
cyclomatic number of G, denoted by r(G).

A bipartite ear decomposition (G1(= x + P1), . . . ,Gr(= G)) of a plane elementary bipartite graph G is called a reducible
face decomposition if G1 is the boundary of an interior face of G and the ith ear Pi lies in the exterior of Gi−1 such that Pi and
the part of the periphery of Gi−1 bound an interior face of G for all 2 ≤ i ≤ r .

Theorem 1.4 ([28]). Let G be a plane bipartite graph other than K2. Then G is elementary if and only if G has a reducible face
decomposition starting with the boundary of any interior face of G.

In Section 2, we characterize the plane elementary bipartite graphs with anti-forcing edges by using reducible face
decomposition. In Section 3, we show that themaximum anti-forcing number of a connected graphwith a perfect matching
is atmost its cyclomatic number. In particular we characterize the graphswith themaximum anti-forcing number achieving
this cyclomatic number in terms of bipartite ear decomposition. We shall see that such extremal graphs are a special type of
plane bipartite graphs, and have a unique perfect matching whose anti-forcing number is maximum. In Section 4, we show
that an even polygonal chain including benzenoid chain has the continuous anti-forcing spectrum. So we can determine the
anti-forcing spectrum by designing linear algorithms to compute the minimum and maximum anti-forcing numbers of an
even polygonal chain.

2. Anti-forcing edge

The Z-transformation graph Z(G) of a plane bipartite graph G is defined as the graph whose vertices represent the perfect
matchings of G where two vertices are adjacent if and only if the symmetric difference of the corresponding two perfect
matchings just forms the boundary of an interior face ofG. A face ofG is said to be resonance if its boundary is anM-alternating
cyclewith respect to a perfectmatchingM ofG. By using reducible face decomposition, Zhang and Zhang [28] described those
plane elementary bipartite graphs whose Z-transformation graphs have a vertex of degree one and characterized the plane
elementary bipartite graphs with a forcing edge.

Theorem 2.1 ([28]). A plane elementary bipartite graph G has a forcing edge if and only if G has a perfect matching M such that
G has exactly two M-resonance faces (the exterior face is allowed) and their boundaries are intersecting. Further each common
edge in M on the two M-resonance faces is a forcing edge of G.
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