Discrete Applied Mathematics I (RNEN) RER-REN

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The fast search number of a Cartesian product of graphs

Yuan Xue, Boting Yang *

Department of Computer Science, University of Regina, Canada

ARTICLE INFO ABSTRACT
Article history: Given a graph that contains an invisible fugitive, the fast searching problem is to find the
Received 11 April 2016 fast search number, i.e., the minimum number of searchers to capture the fugitive in the

Received in revised form 30 October 2016
Accepted 8 March 2017
Available online xxxx

fast search model. In this paper, we give a new lower bound on the fast search number.
Using the new lower bound, we prove an explicit formula for the fast search number of
the Cartesian product of an Eulerian graph and a path. We also give formulas for the fast
search number of variants of the Cartesian product. We present an upper bound on the fast

Iéz;ﬁ rs[grching sear'ch number of hypercubes, and extend the results to a broader class of graphs including
Fast searching toroidal grids. . -
Cops and robber game © 2017 Elsevier B.V. All rights reserved.

1. Introduction

Motivated by applied problems in the real world and theoretical issues in computer science and mathematics, graph
searching has become a hot topic. It has many models, such as edge searching, node searching, mixed searching, fast
searching, etc. These models are basically defined by the class of graphs, the actions of searchers and fugitives, visibility
of fugitives, and conditions of captures [1,2,4,5,9,10].

Parsons [14] first introduced the graph search problem in which both searchers and fugitive move continuously along
edges of a graph. Megiddo et al. [13] studied the discrete version of Parsons’ model, called edge search problem. In the
edge search model, there are three actions for searchers: placing a searcher on a vertex, removing a searcher from a vertex
and sliding a searcher along an edge from one endpoint to the other. An edge is cleared by a sliding action. Kirousis and
Papadimitriou [11] introduced the node search problem, in which there are two actions for searchers: placing and removing.
An edge becomes cleared if both endpoints are occupied by searchers. Bienstock and Seymour [3] introduced the mixed
search problem, which is a combination of the edge searching and node searching. In the mixed search problem, searchers
have the same actions as those in the edge search model, and an edge is cleared if both of its endpoints are occupied by
searchers or cleared by a sliding action.

Dyer et al. [8] introduced the fast search problem. They proposed a linear time algorithm for computing the fast search
number of trees. In the fast search model, there are two actions for searchers: placing and sliding. An edge is cleared by a
sliding action and every edge is traversed exactly once. Details of this model will be given in Section 2. Stanley and Yang [15]
gave a linear time algorithm for computing the fast search number of Halin graphs and their extensions. They also presented a
quadratic time algorithm for computing the fast search number of cubic graphs, while the problem of finding the node search
number of cubic graphs is NP-complete [12]. Yang [17] proved that the problem of finding the fast search number of a graph
is NP-complete; and it remains NP-complete for Eulerian graphs. He also proved that the problem of determining whether
the fast search number of G is a half of the number of odd vertices in G is NP-complete; and it remains NP-complete for planar
graphs with maximum degree 4. Dereniowski et al. [7] characterized graphs for which 2 or 3 searchers are sufficient in the

* Corresponding author.
E-mail addresses: xue228@uregina.ca (Y. Xue), boting.yang@uregina.ca (B. Yang).

http://dx.doi.org/10.1016/j.dam.2017.03.003
0166-218X/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: Y. Xue, B. Yang, The fast search number of a Cartesian product of graphs, Discrete Applied Mathematics (2017),
http://dx.doi.org/10.1016/j.dam.2017.03.003

http://dx.doi.org/10.1016/j.dam.2017.03.003
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:xue228@uregina.ca
mailto:boting.yang@uregina.ca
http://dx.doi.org/10.1016/j.dam.2017.03.003

2 Y. Xue, B. Yang / Discrete Applied Mathematics I (1REN) IRE-HNN

fast search model. They proved that the fast searching problem is NP-hard for multigraphs and for graphs. Very recently, Xue
et al. [16] provided lower bounds and upper bounds on the fast search number of complete k-partite graphs. They solved
the open problem of determining the fast search number of complete bipartite graphs. They also presented upper and lower
bounds on the fast search number of complete split graphs.

This paper is organized as follows. In Section 2, we give some definitions and notation. In Section 3, we first consider the
trail covering problem, and show its relations to the fast searching problem. We then give a new lower bound on the fast
search number. Using the new lower bound, we give an explicit formula for the fast search number of the Cartesian product
of an Eulerian graph and a path. In Section 4, we investigate the fast search number of hypercubes. We prove an upper bound
and a lower bound respectively on the fast search number of hypercubes. Section 5 concludes the paper with some open
problems.

2. Preliminaries

Throughout this paper, we only consider finite undirected graphs with no loops or multiple edges. Let G = (V,E) be a
graph with vertex set V and edge set E. We also use V(G) and E(G) to denote the vertex set and edge set of G respectively.
We use uv to denote an edge with endpoints u and v. For a vertex v € V, the degree of v is the number of edges incident on v,
denoted deg(v). A leaf is a vertex that has degree one. A vertex is odd when its degree is odd. An odd graph is a graph with
vertex degrees all odd. Similarly, a vertex is even when its degree is even; and an even graph is a graph with vertex degrees
all even. Define Vy4q(G) = {v € V : vis odd}.

For a subset V/ C V, we use G[V’] to denote the subgraph induced by V’, which consists of all vertices of V' and all the
edges of G between vertices in V'. We use G — V' to denote the induced subgraph G[V \ V’]. For a subset E’ C E, we use
G — E’ to denote the subgraph (V, E \ E'). Let G; = (V1, E1) and G, = (V,, E;) be two subgraphs of G (the intersection of V;
and V, may not be empty). The union of two graphs G, and G, is the graph G; U G, = (V1 U V5, E;{ U E;). We use G; + V5 to
denote the induced subgraph G[V; U V,] and we also use G; + E; to denote the subgraph (V; UV (E,), E; UE,), where V (E,)
is the vertex set of all edges in E,.

Given two graphs H; and H,, the Cartesian product of Hy and H,, denoted by HOH>, is the graph whose vertex set is the
Cartesian product V(H;) x V(H,) and in which two vertices (u, v), (u/, v') € V(H;) x V(H;) are adjacent in H;OH, if and
only if u = v’ and v is adjacent to v" in Hp, or v = v’ and u is adjacent to v’ in H;.

A walk is a sequence vy, eq, v1, ..., €, Ui of vertices and edges such that each edge e;, 1 < i < k, has endpoints v;_1
and v;. A path is a walk in which every vertex appears once, except that its first vertex might be the same as its last. We use
Vg1 . . . Uk to denote a path with ends vg and vy. A cycle is a path in which its first vertex is the same as its last vertex. We use
Vg7 . . . UkUp to denote a cycle with k+ 1 vertices. We will also use P, to denote a path with n vertices and C, to denote a cycle
with n vertices, respectively. A trail is a walk that does not contain the same edge twice. For a connected subgraph G’ with at
least one edge, an Eulerian trail of G’ is a trail that traverses every edge of G’ exactly once. A circuit is a trail that begins and
ends on the same vertex. An Eulerian circuit of G’ is an Eulerian trail of G’ that begins and ends on the same vertex. A graph
is called Eulerian if it contains an Eulerian circuit that traverses all its edges. We will use B, to denote an Eulerian graph
with m vertices. Note that we only consider finite graphs with no loops or multiple edges. So an Eulerian circuit or Eulerian
subgraph contains at least three edges throughout this paper. A trail cover of a graph G is a family of edge-disjoint trails in G
that contain every edge of G. The minimum number of such trails is called the trail cover number of G and is denoted by 7 (G).

In the fast search model introduced by Dyer et al. [8], an invisible fugitive hides either on a vertex or along an edge, and
he can move at a high speed at any moment from a vertex to another vertex along a path that contains no searchers. We call
an edge uv contaminated if uv may contain the fugitive. An edge uv that does not contain the fugitive is called cleared. One
of the two actions can happen in each step of the fast search model:

e placing a searcher on a vertex; or
e sliding a searcher along a contaminated edge from one endpoint to the other.

Note that the above sliding action is slightly different from the one used in the edge search model, in which a searcher is
allowed to slide along a cleared edge. An edge uv can be cleared in one of the following two ways:

o if uis occupied by at least two searchers, one of them slides along uv from u to v; or
o if u is occupied by only one searcher and uv is the only contaminated edge incident on u, the searcher on u slides to v
along uv.

In the fast search problem, we always suppose that all edges are contaminated initially and each edge will be cleared by
a sliding action, that is, the fugitive is captured at the moment when the last contaminated edge is cleared; we also suppose
that for each contaminated edge, after it is cleared, it will not get recontaminated in the remaining steps. Since searchers
are allowed to slide only on contaminated edges, every edge will be traversed exactly once when all edges are cleared. A fast
search strategy of a graph is a sequence of placing and sliding actions that clear all edges of the graph. Since searchers cannot
be removed from the graph or “jump” from a vertex to another vertex, we can assume, without loss of generality, that all
placing actions in a fast search strategy take place before all sliding actions. The fast search number of a graph G, denoted
by fs(G), is the smallest number of searchers needed to capture the fugitive in G. We say that a fast search strategy of G is

Please cite this article in press as: Y. Xue, B. Yang, The fast search number of a Cartesian product of graphs, Discrete Applied Mathematics (2017),
http://dx.doi.org/10.1016/j.dam.2017.03.003

Download English Version:

https://daneshyari.com/en/article/4949636

Download Persian Version:

https://daneshyari.com/article/4949636

Daneshyari.com

https://daneshyari.com/en/article/4949636
https://daneshyari.com/article/4949636
https://daneshyari.com

