
Discrete Applied Mathematics 222 (2017) 109–123

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Orbital shrinking: Theory and applications
Matteo Fischetti a, Leo Liberti b,*, Domenico Salvagnin a, Toby Walshc

a DEI, Università di Padova, Italy
b CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France
c NICTA and UNSW, Sydney, Australia

a r t i c l e i n f o

Article history:
Received 27 January 2016
Received in revised form 8 January 2017
Accepted 20 January 2017
Available online 21 February 2017

Keywords:
Mathematical programming
Constraint programming
Discrete optimization
Symmetry
Relaxation
MINLP

a b s t r a c t

We present a method, based on formulation symmetry, for generating Mixed-Integer
Linear Programming (MILP) relaxations with fewer variables than the original symmetric
MILP. Our technique also extends to convex MINLP, and some nonconvex MINLP with
a special structure. We showcase the effectiveness of our relaxation when embedded
in a decomposition method applied to two important applications (multi-activity shift
scheduling and multiple knapsack problem), showing that it can improve CPU times by
several orders of magnitude compared to pure MIP or CP approaches.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Branch-and-Bound (BB) type methods often become very slow when the solution set is symmetric [11,25], due to
the exploration of many symmetric subtrees. Given a Mathematical Programming (MP) formulation, we distinguish the
automorphismgroupof its solution set (called the solution group) and the groupof variable symmetries fixing the formulation
(called the formulation group). The latter is usually defined as the group of variable index permutations keeping the objective
function invariant and permuting the order of the constraints [3,23]. It is very easy to show that the formulation group is a
subgroup of the solution group.

Finding a universal technique for determining the solution group automatically would imply knowing the solution set a
priori, whichwouldmake the optimization problemmoot. On the other hand, various techniques for finding the formulation
group of a Constraint Satisfaction Program (CSP) and of a MP have been proposed in the literature [2,19,20,37]. The most
efficient methods reduce to the graph isomorphism problem, which can be solved in practice using tools such as nauty [27].

Once some symmetries are known, they can be exploited in a variety ofways. In Constraint Programming (CP) andMixed-
Integer Programming (MIP), a common technique consists in trying to make some of the symmetric solutions infeasible by:

• adjoining Symmetry-Breaking Constraints (SBC) to the original formulation [20,21,46];
• using a clever branching strategy in constraint propagation [10] or in BB (e.g. isomorphism pruning [23,24] or orbital

branching [30,31]).

In Semidefinite Programming (SDP), due to the fact that decision variables are matrices, symmetry can be exploited very
naturally through group representation theory. This yields formulations with fewer variables (in fact, the variable matrix
becomes block-diagonal) but having the same optimum [8].
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A different approach is proposed in [2], where solving an Integer Linear Program (ILP) with a highly transitive solution
group is essentially reduced to a line search in a lattice. The proposed method is very innovative, but most practically
occurring ILPs have groups that are very far from being transitive. A generalization of this approach which aims to relax
the requirement for high transitivity is given in [14]. Although applicability remains limited, this technique was used in
solving the instance toll-like in the MIPLIB2010 library [18], which was previously unsolved.

We propose another approach, called Orbital Shrinking (OS), for exploiting symmetry in MILP and certain subclasses of
Mixed-Integer Nonlinear Programming (MINLP). Orbital shrinking is a relaxation technique: given aMIP P and a subgroup G
of its formulation (or solution) group, it replaces each orbit of variables by a single variable. Therefore, OS produces compact
MIP relaxations. If G is transitive, and hence has only one orbit, the resulting MIP is trivial, because it has only one variable.
At the other extreme, if G is the trivial group, then there are as many orbits as there are variables, and the relaxation is the
same as the original MIP.

To solve problems exactly, we employ the OS relaxation (OSR) in a general purpose decomposition framework, which
we apply to two real-life applications: multi-activity shift scheduling and multiple knapsack problems. OS decomposition
naturally provides a newway for designinghybridMIP/CPdecompositions: our computational results show that the resulting
method can be orders of magnitude faster than pure MIP or CP approaches.

The outline of the paper is as follows. In Section 1.1, we review some main results on symmetry groups in the context
of optimization problems. Then, in Section 2, we present orbital shrinking, and show that it yields a relaxation of the
original problem. In Section 3 we analyze differences and similarities between OS and core point algorithms. In Section 4
we describe a general decomposition framework based on orbital shrinking, while in Sections 5 and 6 we specialize the
general framework to multi-activity shift scheduling andmultiple knapsack problems, also reporting computational results.
Conclusions are finally drawn in Section 7.

We assume the reader is familiar withmixed-integer programming, constraint programming and basic group theory. The
present paper extends and is based on the preliminary results presented in [7,42,43], by the same authors.

1.1. Some notation and terminology

Let P be an arbitrary MINLP of the form

min f (x) (1)

∀i ∈ C gi(x) ≤ 0 (2)

∀j ∈ J xj ∈ Z (3)

where J ⊆ [n] = {1, . . . , n} is the subset of integer variables. Without loss of generality, the objective function f (x) is
assumed to be convex. For a point x′

∈ Rn and a subset V ⊆ [n], we let x′
[V ] be the subsequence of x′ indexed by V .

We consider the formulation group GP of P , containing the set of permutations π ∈ Sn (the symmetric group of order
n, which acts naturally on the variable indices) that leave the formulation of P unchanged, except for a possible reordering
of the constraints. The practical applicability of this definition extends to Linear Programs (LP) and MILPs. With MINLPs, we
restrict our attention to functional forms which are closed with respect to the usual operators (+,−,×,÷, (·)a) and unary
functions (log, exp). These expressions are easily represented by trees, and whole MINLP formulations can be represented
by suitable Directed Acyclic Graphs (DAG) [1]. GP is then obtained as a restriction of the automorphism group of this DAG
to the set of variable indices of P [20]. GP can be computed by means of any graph isomorphism package such as Nauty [28]
or Saucy [17]: these both implement backtracking algorithms which are exponential-time in the worst case, but which are
sufficiently fast in practice to be of use.

Any subgroupG of Sn partitions the set of variables into equivalence classes called orbits via its natural action: two variable
indices i, j are in the same class if there is g ∈ G such that g(i) = j. We denote by ΩG the orbital partition of the action
of G on [n]. We remark that, by definition, integer and continuous variables cannot be permuted with each other, so each
orbit contains only integer or only continuous variables. Constraints of P are themselves partitioned into equivalence classes,
called constraint orbits: in particular, two constraints are in the same orbit if and only if one ismapped into the other (because
of reordering) when some variable permutation π ∈ G is applied. Finally, given a subset I ⊆ [n], the point-wise stabilizer G[I]
of Gwith respect to I is the subgroup of G consisting of permutations π such that π (i) = i for all i ∈ I .

2. Orbital shrinking relaxation

The OSR with respect to a subgroup G of Sn could be best described as ‘‘formulation modulo G’’, as it replaces entire orbits
by single variables. In this section, we will describe how to construct the OSR of a given optimization problem P , and show
that this is indeed a relaxation of the original problem.

The first step is to classify variables and constraints according to their incidence and (non)linearity/convexity. Specifically,
the group G defining the OSR will be taken with respect to partitions (V1, V2) and (C1, C2, C3) of the variables and constraints
of P respectively, that satisfy the following conditions:
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