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a b s t r a c t

We analyze site percolation on directed and undirected graphs with site-dependent
open-site probabilities. We construct upper bounds on cluster susceptibilities, vertex
connectivity functions, and the expected number of simple open cycles through a chosen
arc; separate bounds are given on finite and infinite (di)graphs. These produce lower
bounds for percolation and uniqueness transitions in infinite (di)graphs, and for the
formation of a giant component in finite (di)graphs. The bounds are formulated in terms
of appropriately weighted adjacency and non-backtracking (Hashimoto) matrices. It turns
out to be the uniqueness criterion that is most closely associated with an asymptotically
vanishing probability of forming a giant strongly-connected component on a large finite
(di)graph.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We are currently living in an age where many scientific and industrial applications rapidly generate large datasets. The
connectivity and underlying structure of this data is of great interest. As a result, graph theory has enjoyed a resurgence,
becoming a prominent tool for describing complex connections in various kinds of networks: social, biological, technological
[2,1,13,20,19,61,64,65], and many others. Percolation on graphs has been used to describe internet stability [16,14], spread
of contagious diseases [30,57,68] and computer viruses [62]; relatedmodels describemarket crashes [28] and viral spread in
social networks [72,44,40]. General percolation theorymethods are increasingly used in quantum information theory [23,48,
36,45,18]. Percolation is also an important phase transition in its own right [43,26,25,73] and is well established in physics
as an approach for dealing with strong disorder: quantum or classical transport [4,46,39], bulk properties of composite
materials [9,58], diluted magnetic transitions [70], or spin glass transitions [21,60,22,17,69].

Recently, we suggested [31] a lower bound on the site percolation transition on an infinite graph,

pc ≥ 1/ρ(H). (1)

Here, ρ(H) is the spectral radius of the non-backtracking (Hashimoto) matrix [35] H associated with the graph. This
expression has been proved [31] for infinite quasi-transitive graphs, a graph-theoretic analog of translationally-invariant
systems with a finite number of inequivalent sites. The bound (1) is achieved on any infinite quasi-transitive tree [31], and
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it also gives numerically exact percolation thresholds for several families of large random graphs, as well as for some large
empirical graphs [41].

In most applications of percolation theory, one encounters large, but finite, graphs. The expectation is that the
corresponding crossover retains some properties of the transition in the infinite graphs, e.g., the formation of large open
clusters be unlikely if the open site probability p is well below pc . However, the bound (1) tells nothing about the structure
of the percolating cluster on finite graphs, and neither it gives an algorithm for computing the location of the crossover in
the case of a finite graph [64]. In particular, Eq. (1) misses the mark entirely for any finite tree where ρ(H) = 0.

In this work, we construct several spectral and algebraic bounds for transitions associated with heterogeneous site
percolation on directed and undirected graphs, both finite and infinite, and analyze the continuity of these bounds for a
sequence of finite digraphs weakly convergent to an infinite graph. Namely, for finite digraphs, we construct explicit upper
bounds for the local in-/out-/strong-cluster susceptibilities (average size of a cluster connected to a given site), the strong
connectivity function (probability that a given pair of sites belongs to the same strongly-connected cluster), and the expected
number of simple cycles passing through a given arc. We also construct some analogous bounds for infinite digraphs, which
result in non-trivial lower bounds for the transitions associated with divergent in-/out-cluster susceptibilities, emergence
of infinite in-/out-clusters, and the strong-cluster uniqueness transition.

Our results imply that Eq. (1) and its analogue for heterogeneous site percolation on a general digraph give a universal
bound for the strong-cluster uniqueness transition, belowwhich a strongly connected infinite cluster cannot be unique. Such
a bound is continuous for an increasing sequence of subgraphs if the percolation problem on the limiting digraph has a finite
minimum return probability, the probability that any arc and its inverse are connected by an open non-backtracking path.
Finiteminimum return probability also guarantees that below this bound, the strong connectivity decays exponentiallywith
the distance, and the expected size of a strongly connected cluster scales sublinearlywith the number of vertices in a digraph.
In comparison, the bound (1) applies only conditionally to the percolation transition proper, e.g., for a weakly-convergent
sequence of quasi-transitive digraphs of increasing size, where the number of inequivalent vertex classes remains uniformly
bounded.

The remainder of this paper is organized in four sections. In Section 2 we define several matrices associated with
heterogeneous site percolation and introduce other notations. Ourmain results are given in Section 3which contains bounds
for finite digraphs, and in Section 4 where infinite digraphs are discussed. Finally, in Section 5 we compare effectiveness of
different criteria in limiting the emergence of a giant component, an open clusterwhich contains a finite fraction of all vertices
in the digraph.

2. Definitions and notations

We consider only simple directed and undirected graphs with no loops or multiple edges. A general digraph D = (V, E)
is specified by its sets of vertices (also called sites) V ≡ V(D) and edges E ≡ E(D). Each edge (bond) is a pair of vertices,
(u, v) ⊆ E which can be directed, u → v, or undirected, u ↔ v. A directed edge u → v is also called an arc from u to
v; an undirected (symmetric) edge can be represented as a pair of mutually inverted arcs, u ↔ v ≡ {u → v, v → u}. A
digraph with no undirected edges is an oriented graph. We will denote the set of arcs in a (di)graph D as A ≡ A(D). Each
vertex v ∈ V in a digraphD is characterized by its in-degree id(v) and out-degree od(v), the number of arcs inA(D) to and
from v, respectively. A digraph with no directed edges is an undirected graph G = (V, E). For every vertex in an undirected
graph, the degree is the number of bonds that include v, deg(v) = id(v) = od(v).

We say that vertex u is connected to vertex v on a digraph D , if there is a path from u = u0 to v ≡ uℓ,

P ≡ {u0 → u1, u1 → u2, . . . , uℓ−1 → uℓ} ⊆ A(D). (2)

The path is called non-backtracking if ui−1 ≠ ui+1, 0 < i < ℓ, and self-avoiding (simple) if ui ≠ uj for 0 ≤ i, j ≤ ℓ. The length
of the path is the number of arcs in the set, ℓ = |P |. The distance from u to v on D, d(u, v), is the minimum length of a
path from u to v. We call path (2) open if u0 ≠ uℓ, and closed otherwise. A closed path is a cycle; it can be non-backtracking
or self-avoiding (simple). Connectivity on an undirected graph is a symmetric relation: we just say that vertices u and v
are connected (or not). On a digraph, we say that vertices u and v are strongly connected iff u is connected to v and v is
connected to u; u and v are weakly connected on D if they are connected on the undirected graph underlying D . A ray is a
semi-infinite simple path, characterized as in- or out-going according to the directionality of the constituent arcs. A strong
ray is a strongly connected union of in- and out-going rays; it has the property that the intersection between the vertex sets
is an infinite set.

A digraph D is called transitive iff for any two vertices u, v in V ≡ V(D) there is an automorphism (symmetry) of D
mapping u onto v. Digraph D is called quasi-transitive if there is a finite set of vertices V0 ⊂ V such that any u ∈ V is
taken into V0 by some automorphism of D . We say that any vertex which can be mapped onto a vertex u0 ∈ V0 is in the
equivalence class of u0. The square lattice is an example of a transitive graph; a two-dimensional lattice with r inequivalent
vertex classes defines a (planar) quasi-transitive graph.

A graph G′
= (V ′, E ′) is called a covering graph of G = (V, E) if is there is a function f : V ′

→ V , such that an edge
(u′, v′) ∈ E ′ is mapped to the edge (f (u′), f (v′)) ∈ E , with an additional property that f be invertible in the vicinity of
each vertex, i.e., for a given vertex u′

∈ V ′ and an edge (f (u′), v) ∈ E , there must be a unique edge (u′, v′) ∈ E ′ such that
f (v′) = v. The universal cover G of a connected graph G is a connected covering graph which has no cycles (a tree); it is
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