Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Relation between the skew energy of an oriented graph and its matching number

Fenglei Tian, Dein Wong*

Department of Mathematics, China University of Mining and Technology, Xuzhou 221116, China

ARTICLE INFO

Article history: Received 26 July 2016 Received in revised form 28 December 2016 Accepted 6 January 2017 Available online 7 February 2017

Keywords: Oriented graphs Skew energy Matching number Skew rank

ABSTRACT

Let G^{σ} be an oriented graph with skew adjacency matrix $S(G^{\sigma})$. The skew energy $\mathcal{E}_{S}(G^{\sigma})$ of G^{σ} is the sum of the norms of all eigenvalues of $S(G^{\sigma})$ and the skew rank $sr(G^{\sigma})$ of G^{σ} is the rank of $S(G^{\sigma})$. In this paper, it is proved that $\mathcal{E}_{S}(G^{\sigma}) \geq 2\mu(G)$ for an arbitrary connected oriented graph G^{σ} of order n, where $\mu(G)$ is the matching number of G, and the equality holds if and only if G is a complete bipartite graph $K_{\frac{n}{2},\frac{n}{2}}^{\frac{n}{2}}$ with partition (X, Y) of equal size and σ is switching-equivalent to the elementary orientation of G which assigns all edges the same direction from vertices of X to vertices of Y. As an application, we prove that $\mathcal{E}_{S}(G^{\sigma}) \geq sr(G^{\sigma})$ for an oriented graph G^{σ} and the equality holds if and only if G is the disjoint union of some copies of K_{2} and some isolated vertices.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Analogous to the definition of the energy of a simple undirected graph, Adiga et al. [1] defined the skew energy $\mathcal{E}_S(G^{\sigma})$ of an oriented graph G^{σ} , with adjacency matrix $S(G^{\sigma})$, to be the sum of the norms of all eigenvalues of $S(G^{\sigma})$. Since $S(G^{\sigma})$ is skew symmetric, an eigenvalue of $S(G^{\sigma})$ is either a pure imaginary number or 0, thus the norm of an eigenvalue of $S(G^{\sigma})$ is a singular value of $S(G^{\sigma})$ also equals the sum of all singular values of $S(G^{\sigma})$.

Adiga et al. [1] established a low bound and an upper bound for the skew energy of an oriented graph G^{σ} in terms of the order and size of G^{σ} as well as the maximum degree of its underlying graph.

Proposition 1.1 (Theorem 2.5, [1]). Let G^{σ} be an oriented graph of G with n vertices, m arcs and maximum degree Δ . Then

$$\sqrt{2m+n(n-1)p^{\frac{2}{n}}} \leq \mathcal{E}_{\mathcal{S}}(G^{\sigma}) \leq \sqrt{2mn} \leq n\sqrt{\Delta},$$

where $p = |\det(S(G^{\sigma}))|$.

The upper bound $n\sqrt{\Delta}$ of $\mathcal{E}_S(G^{\sigma})$ is called the optimum skew energy. It was proved that if an oriented graph G^{σ} has the optimum skew energy, then G is a Δ -regular graph. Hence a natural question was posed in [1]: Which k-regular graphs G on n vertices have an orientation σ such that $\mathcal{E}_S(G^{\sigma}) = n\sqrt{k}$? For a small k, some results have been obtained. If $k \leq 2$, the authors in [1] characterized the k-regular graphs which has an orientation such that $\mathcal{E}_S(G^{\sigma}) = n\sqrt{k}$. Gong and Xu [10] characterized all 3-regular oriented graphs with optimum skew energy. Chen et al. [5] and Gong et al. [11] independently determined the underlying graphs of all 4-regular oriented graphs with optimum skew energy and gave orientations of these underlying

* Corresponding author. E-mail address: wongdein@163.com (D. Wong).

http://dx.doi.org/10.1016/j.dam.2017.01.004 0166-218X/© 2017 Elsevier B.V. All rights reserved.

graphs such that the skew energies of the resultant oriented graphs indeed attain optimum. Chen et al. [6] obtained some lower bounds of the skew energy of G^{σ} , which improves the known lower bound obtained by Adiga et al. [1]. For more recent results on skew adjacency matrix or skew energy of oriented graphs we refer the reader to [3,4,9,13–18].

In this paper, we study the relation between the skew energy $\mathcal{E}_{S}(G^{\sigma})$ of an oriented graph G^{σ} and its matching number. In Section 2, we prove that $\mathcal{E}_{S}(G^{\sigma}) \ge 2\mu(G)$ for a connected oriented graph G^{σ} with matching number $\mu(G)$. In Section 3, we characterize the oriented graphs G^{σ} with equality $\mathcal{E}_{S}(G^{\sigma}) = 2\mu(G)$, proving that the equality holds if and only if *G* is a complete bipartite graph with equal bipartite (X, Y) and σ is switching-equivalent to the elementary orientation of *G* which assigns all edges the same direction from vertices of *X* to those of *Y*. As an application, we prove that $\mathcal{E}_{S}(G^{\sigma}) \ge sr(G^{\sigma})$ for an oriented graph G^{σ} and the equality holds if and only if *G* is the disjoint union of some copies of K_2 and some isolated vertices.

2. A lower bound of the skew energy of an oriented graph in terms of matching number

Let *G* be a simple graph of order *n* with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set E(G). Based on *G*, we define an oriented graph G^{σ} obtained from *G* by assigning each edge of *G* a direction, where *G* is called the underlying graph of G^{σ} . The skew adjacency matrix associated to G^{σ} , written as $S(G^{\sigma})$, is defined to be an $n \times n$ matrix (s_{ij}) such that $s_{ij} = 1$ if there is an arc from v_i to v_j , $s_{ij} = -1$ if there is an arc from v_j to v_i and $s_{ij} = 0$ otherwise. The skew rank of G^{σ} , denoted by $sr(G^{\sigma})$, is defined to be the rank of $S(G^{\sigma})$, which is even since $S(G^{\sigma})$ is skew symmetric. Let $C_k^{\sigma} = u_1u_2 \cdots u_ku_1$ be an oriented cycle. The sign of C_k^{σ} , denoted by $sgn(C_k^{\sigma})$, is defined to be the sign of $(\Pi_{i=1}^{k-1}s_{u_iu_{i+1}})s_{u_ku_1}$. An even oriented cycle C_{2m}^{σ} is called evenly-oriented (resp., oddly-oriented) if its sign is positive (resp., negative). If every even cycle in G^{σ} is evenly-oriented, then G^{σ} is called evenly-oriented. An induced subgraph H^{σ} of G^{σ} is an oriented graph such that *H* is an induced subgraph of *G* and each arc of H^{σ} has the same orientation as that in G^{σ} . For $U \subseteq V(G^{\sigma})$, $G^{\sigma} - U$ is the subgraph obtained from G^{σ} by deleting all vertices in *U* and all incident arcs. A vertex of a graph G^{σ} is called pendant if it is only adjacent to one vertex. A set *M* of edges in *G* is a matching if every vertex of *G* is incident with at most one edge in *M*. It is a perfect matching if every vertex of *G* is incident with exactly one edge in *M*. We denote by $\mu(G)$ the matching number of *G* (i.e. the number of edges of a maximum matching in *G*). We respectively use P_n , C_n , K_n , $K_{p,n-p}$ to denote a path, a cycle, a complete graph and a complete bipartite graph on *n* vertices.

Let $s_j(C)$ denote a singular value of a complex matrix C. Day and So [8] obtained an inequality about a partitioned matrix C as follows.

Lemma 2.1 (Theorem 2.2, [8]). For a partitioned matrix $C = \begin{bmatrix} A & X \\ Y & B \end{bmatrix}$, where both A and B are square matrices, we have $\sum_j s_j(A) + \sum_j s_j(B) \le \sum_j s_j(C)$. Equality holds if and only if there exist unitary matrices U and V such that $\begin{bmatrix} UA & UX \\ VY & VB \end{bmatrix}$ is positive semi-definite.

Lemma 2.2 (Corollary 2.4, [8]). For a partitioned matrix $C = \begin{bmatrix} A & X \\ Y & B \end{bmatrix}$, where both A and B are square matrices, we have $\sum_j s_j(A) \le \sum_j s_j(C)$. Equality holds if and only if X, Y and B are all zero matrices.

Applying Lemma 2.2 to an induced subgraph H^{σ} of an oriented graph G^{σ} , we obtain a similar result as Theorem 3.1 of [8].

Lemma 2.3. Let H^{σ} be an induced subgraph of an oriented graph G^{σ} . Then $\mathcal{E}_{S}(H^{\sigma}) \leq \mathcal{E}_{S}(G^{\sigma})$ and equality holds if and only if E(H) = E(G).

We write $G^{\sigma} - H^{\sigma}$ for the oriented graph obtained from G^{σ} by deleting all vertices of an induced subgraph H^{σ} and all arcs incident with H^{σ} . This is also called the complement of H^{σ} in G^{σ} . Moreover, when no arcs of G^{σ} join H^{σ} and its complement $G^{\sigma} - H^{\sigma}$, we write $G^{\sigma} = H^{\sigma} \oplus (G^{\sigma} - H^{\sigma})$. If *E* is a set of arcs of G^{σ} such that $G^{\sigma} - E$, the subgraph of G^{σ} obtained from G^{σ} by deleting all arcs in *E*, is the union of two complementary induced subgraphs, then *E* is called a cut set of G^{σ} . Theorem 3.4 of [8] proved that the energy of a spanned subgraph of a simple graph *G* does not exceed that of *G* when a cut set of *G* is deleted. A similar result also holds for oriented graphs.

Lemma 2.4. If *E* is a cut set of an oriented graph G^{σ} then $\mathcal{E}_{S}(G^{\sigma} - E) \leq \mathcal{E}_{S}(G^{\sigma})$.

Proof. Since *E* is a cut set of G^{σ} , $G^{\sigma} - E = H^{\sigma} \oplus K^{\sigma}$, where H^{σ} and K^{σ} are two complementary induced subgraphs of G^{σ} . Applying Lemma 2.1 to $S(G^{\sigma}) = \begin{bmatrix} S(H^{\sigma}) & *\\ * & S(K^{\sigma}) \end{bmatrix}$, we obtain the desired conclusion. \Box

Theorem 3.6 of [8] proved that $\mathcal{E}(G - E) < \mathcal{E}(G)$ if *E* is a cut set of a graph *G* which forms a star, where $\mathcal{E}(G)$ denotes the energy of *G* (see [8] for its definition). This result can also be translated to oriented graphs. The proof of the following lemma is analogous to that of Theorem 3.6 of [8], thus omitted.

Lemma 2.5. If *E* is a cut set of an oriented graph G^{σ} such that the arcs of *E* form an oriented star, then $\mathcal{E}_{S}(G^{\sigma} - E) < \mathcal{E}_{S}(G^{\sigma})$.

Now, we apply Lemma 2.4 to obtain a lower bound of the skew energy of an oriented graph in terms of matching number.

Download English Version:

https://daneshyari.com/en/article/4949657

Download Persian Version:

https://daneshyari.com/article/4949657

Daneshyari.com