Relation between the skew energy of an oriented graph and its matching number

Fenglei Tian, Dein Wong*
Department of Mathematics, China University of Mining and Technology, Xuzhou 221116, China

A R T I CLE INFO

Article history:

Received 26 July 2016
Received in revised form 28 December 2016
Accepted 6 January 2017
Available online 7 February 2017

Keywords:

Oriented graphs
Skew energy
Matching number
Skew rank

Abstract

Let G^{σ} be an oriented graph with skew adjacency matrix $S\left(G^{\sigma}\right)$. The skew energy $\varepsilon_{S}\left(G^{\sigma}\right)$ of G^{σ} is the sum of the norms of all eigenvalues of $S\left(G^{\sigma}\right)$ and the skew rank $\operatorname{sr}\left(G^{\sigma}\right)$ of G^{σ} is the rank of $S\left(G^{\sigma}\right)$. In this paper, it is proved that $\varepsilon_{S}\left(G^{\sigma}\right) \geq 2 \mu(G)$ for an arbitrary connected oriented graph G^{σ} of order n, where $\mu(G)$ is the matching number of G, and the equality holds if and only if G is a complete bipartite graph $K_{\frac{n}{2}, \frac{n}{2}}$ with partition (X, Y) of equal size and σ is switching-equivalent to the elementary orientation of G which assigns all edges the same direction from vertices of X to vertices of Y. As an application, we prove that $\varepsilon_{S}\left(G^{\sigma}\right) \geq \operatorname{sr}\left(G^{\sigma}\right)$ for an oriented graph G^{σ} and the equality holds if and only if G is the disjoint union of some copies of K_{2} and some isolated vertices.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Analogous to the definition of the energy of a simple undirected graph, Adiga et al. [1] defined the skew energy $\varepsilon_{S}\left(G^{\sigma}\right)$ of an oriented graph G^{σ}, with adjacency matrix $S\left(G^{\sigma}\right)$, to be the sum of the norms of all eigenvalues of $S\left(G^{\sigma}\right)$. Since $S\left(G^{\sigma}\right)$ is skew symmetric, an eigenvalue of $S\left(G^{\sigma}\right)$ is either a pure imaginary number or 0 , thus the norm of an eigenvalue of $S\left(G^{\sigma}\right)$ is a singular value of $S\left(G^{\sigma}\right)$ and $\varepsilon_{S}\left(G^{\sigma}\right)$ also equals the sum of all singular values of $S\left(G^{\sigma}\right)$.

Adiga et al. [1] established a low bound and an upper bound for the skew energy of an oriented graph G^{σ} in terms of the order and size of G^{σ} as well as the maximum degree of its underlying graph.

Proposition 1.1 (Theorem 2.5, [1]). Let G^{σ} be an oriented graph of G with n vertices, m arcs and maximum degree Δ. Then

$$
\sqrt{2 m+n(n-1) p^{\frac{2}{n}}} \leq \varepsilon_{S}\left(G^{\sigma}\right) \leq \sqrt{2 m n} \leq n \sqrt{\Delta}
$$

where $p=\left|\operatorname{det}\left(S\left(G^{\sigma}\right)\right)\right|$.
The upper bound $n \sqrt{\Delta}$ of $\varepsilon_{S}\left(G^{\sigma}\right)$ is called the optimum skew energy. It was proved that if an oriented graph G^{σ} has the optimum skew energy, then G is a Δ-regular graph. Hence a natural question was posed in [1]: Which k-regular graphs G on n vertices have an orientation σ such that $\varepsilon_{S}\left(G^{\sigma}\right)=n \sqrt{k}$? For a small k, some results have been obtained. If $k \leq 2$, the authors in [1] characterized the k-regular graphs which has an orientation such that $\varepsilon_{S}\left(G^{\sigma}\right)=n \sqrt{k}$. Gong and Xu [10] characterized all 3-regular oriented graphs with optimum skew energy. Chen et al. [5] and Gong et al. [11] independently determined the underlying graphs of all 4-regular oriented graphs with optimum skew energy and gave orientations of these underlying

[^0]graphs such that the skew energies of the resultant oriented graphs indeed attain optimum. Chen et al. [6] obtained some lower bounds of the skew energy of G^{σ}, which improves the known lower bound obtained by Adiga et al. [1]. For more recent results on skew adjacency matrix or skew energy of oriented graphs we refer the reader to [3,4,9,13-18].

In this paper, we study the relation between the skew energy $\varepsilon_{S}\left(G^{\sigma}\right)$ of an oriented graph G^{σ} and its matching number. In Section 2, we prove that $\varepsilon_{S}\left(G^{\sigma}\right) \geq 2 \mu(G)$ for a connected oriented graph G^{σ} with matching number $\mu(G)$. In Section 3 , we characterize the oriented graphs G^{σ} with equality $\varepsilon_{S}\left(G^{\sigma}\right)=2 \mu(G)$, proving that the equality holds if and only if G is a complete bipartite graph with equal bipartite (X, Y) and σ is switching-equivalent to the elementary orientation of G which assigns all edges the same direction from vertices of X to those of Y. As an application, we prove that $\mathcal{E}_{S}\left(G^{\sigma}\right) \geq \operatorname{sr}\left(G^{\sigma}\right)$ for an oriented graph G^{σ} and the equality holds if and only if G is the disjoint union of some copies of K_{2} and some isolated vertices.

2. A lower bound of the skew energy of an oriented graph in terms of matching number

Let G be a simple graph of order n with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Based on G, we define an oriented graph G^{σ} obtained from G by assigning each edge of G a direction, where G is called the underlying graph of G^{σ}. The skew adjacency matrix associated to G^{σ}, written as $S\left(G^{\sigma}\right)$, is defined to be an $n \times n$ matrix ($s_{i j}$) such that $s_{i j}=1$ if there is an arc from v_{i} to $v_{j}, s_{i j}=-1$ if there is an arc from v_{j} to v_{i} and $s_{i j}=0$ otherwise. The skew rank of G^{σ}, denoted by $\operatorname{sr}\left(G^{\sigma}\right)$, is defined to be the rank of $S\left(G^{\sigma}\right)$, which is even since $S\left(G^{\sigma}\right)$ is skew symmetric. Let $C_{k}^{\sigma}=u_{1} u_{2} \cdots u_{k} u_{1}$ be an oriented cycle. The sign of C_{k}^{σ}, denoted by $\operatorname{sgn}\left(C_{k}^{\sigma}\right)$, is defined to be the sign of $\left(\Pi_{i=1}^{k-1} s_{u_{i} u_{i+1}}\right) s_{u_{k} u_{1}}$. An even oriented cycle $C_{2 m}^{\sigma}$ is called evenly-oriented (resp., oddly-oriented) if its sign is positive (resp., negative). If every even cycle in G^{σ} is evenly-oriented, then G^{σ} is called evenly-oriented. An induced subgraph H^{σ} of G^{σ} is an oriented graph such that H is an induced subgraph of G and each arc of H^{σ} has the same orientation as that in G^{σ}. For $U \subseteq V\left(G^{\sigma}\right), G^{\sigma}-U$ is the subgraph obtained from G^{σ} by deleting all vertices in U and all incident arcs. A vertex of a graph G^{σ} is called pendant if it is only adjacent to one vertex. A set M of edges in G is a matching if every vertex of G is incident with at most one edge in M. It is a perfect matching if every vertex of G is incident with exactly one edge in M. We denote by $\mu(G)$ the matching number of G (i.e. the number of edges of a maximum matching in G). We respectively use $P_{n}, C_{n}, K_{n}, K_{p, n-p}$ to denote a path, a cycle, a complete graph and a complete bipartite graph on n vertices.

Let $s_{j}(C)$ denote a singular value of a complex matrix C. Day and So [8] obtained an inequality about a partitioned matrix C as follows.
Lemma 2.1 (Theorem 2.2, [8]). For a partitioned matrix $C=\left[\begin{array}{cc}A & X \\ Y & B\end{array}\right]$, where both A and B are square matrices, we have $\sum_{j} s_{j}(A)+\sum_{j} s_{j}(B) \leq \sum_{j} s_{j}(C)$. Equality holds if and only if there exist unitary matrices U and V such that $\left[\begin{array}{cc}U A & U X \\ V Y & V B\end{array}\right]$ is positive semi-definite.

Lemma 2.2 (Corollary 2.4, [8]). For a partitioned matrix $C=\left[\begin{array}{cc}A & X \\ Y & B\end{array}\right]$, where both A and B are square matrices, we have $\sum_{j} s_{j}(A) \leq \sum_{j} s_{j}(C)$. Equality holds if and only if X, Y and B are all zero matrices.

Applying Lemma 2.2 to an induced subgraph H^{σ} of an oriented graph G^{σ}, we obtain a similar result as Theorem 3.1 of [8].
Lemma 2.3. Let H^{σ} be an induced subgraph of an oriented graph G^{σ}. Then $\varepsilon_{S}\left(H^{\sigma}\right) \leq \varepsilon_{S}\left(G^{\sigma}\right)$ and equality holds if and only if $E(H)=E(G)$.

We write $G^{\sigma}-H^{\sigma}$ for the oriented graph obtained from G^{σ} by deleting all vertices of an induced subgraph H^{σ} and all arcs incident with H^{σ}. This is also called the complement of H^{σ} in G^{σ}. Moreover, when no arcs of G^{σ} join H^{σ} and its complement $G^{\sigma}-H^{\sigma}$, we write $G^{\sigma}=H^{\sigma} \oplus\left(G^{\sigma}-H^{\sigma}\right)$. If E is a set of arcs of G^{σ} such that $G^{\sigma}-E$, the subgraph of G^{σ} obtained from G^{σ} by deleting all arcs in E, is the union of two complementary induced subgraphs, then E is called a cut set of G^{σ}. Theorem 3.4 of [8] proved that the energy of a spanned subgraph of a simple graph G does not exceed that of G when a cut set of G is deleted. A similar result also holds for oriented graphs.

Lemma 2.4. If E is a cut set of an oriented graph G^{σ} then $\varepsilon_{S}\left(G^{\sigma}-E\right) \leq \varepsilon_{S}\left(G^{\sigma}\right)$.
Proof. Since E is a cut set of $G^{\sigma}, G^{\sigma}-E=H^{\sigma} \oplus K^{\sigma}$, where H^{σ} and K^{σ} are two complementary induced subgraphs of G^{σ}. Applying Lemma 2.1 to $S\left(G^{\sigma}\right)=\left[\begin{array}{cc}S\left(H^{\sigma}\right) & * \\ * & S\left(K^{\sigma}\right)\end{array}\right]$, we obtain the desired conclusion.

Theorem 3.6 of [8] proved that $\mathcal{E}(G-E)<\mathcal{E}(G)$ if E is a cut set of a graph G which forms a star, where $\mathcal{E}(G)$ denotes the energy of G (see [8] for its definition). This result can also be translated to oriented graphs. The proof of the following lemma is analogous to that of Theorem 3.6 of [8], thus omitted.

Lemma 2.5. If E is a cut set of an oriented graph G^{σ} such that the arcs of E form an oriented star, then $\varepsilon_{S}\left(G^{\sigma}-E\right)<\varepsilon_{S}\left(G^{\sigma}\right)$.
Now, we apply Lemma 2.4 to obtain a lower bound of the skew energy of an oriented graph in terms of matching number.

https://daneshyari.com/en/article/4949657

Download Persian Version:

https://daneshyari.com/article/4949657

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: wongdein@163.com (D. Wong).
 http://dx.doi.org/10.1016/j.dam.2017.01.004
 0166-218X/© 2017 Elsevier B.V. All rights reserved.

