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a b s t r a c t

A b-coloring of a graph Gwith k colors is a proper coloring of G using k colors in which each
color class contains a color dominating vertex, that is, a vertexwhich has a neighbor in each
of the other color classes. The largest positive integer k for which G has a b-coloring using
k colors is the b-chromatic number b(G) of G. In this paper, we have obtained bounds for
the b-chromatic number of powers of Qn, namely Q p

n , for n ≥ 5 and
 n

2


< p < n− 1. Also

we have found the exact value of the b-chromatic number of Q p
n for n ≥ 3, and p =

 n
2


and p = n− 1. In addition, we have determined the clique number of Q p

n for n ≥ 3 and the
chromatic number of Q p

n for n ≥ 2 and


2(n−1)
3


≤ p ≤ n− 1.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. A b-coloring of a graph is a proper coloring of the
vertices of G such that each color class contains a color dominating vertex (c.d.v.), that is, a vertex which is adjacent to at
least one vertex of every other color class. The largest positive integer k for which G has a b-coloring using k colors is the
b-chromatic number b(G) of G. From the definition of χ(G), we observe that each color class of a χ-coloring contains a c.d.v.
Thus ω(G) ≤ χ(G) ≤ b(G), where ω(G) is the size of a maximum clique of G. The concept of b-coloring was introduced by
Irving and Manlove [9] in analogy to the achromatic number of a graph G. They have shown that the determination of b(G)
is NP-hard for general graphs, but polynomial for trees. Some of the references in b-coloring are [1,6,5,13].

Suppose that the vertices of a graph G are ordered as v1, v2, . . . , vn such that d(v1) ≥ d(v2) ≥ · · · ≥ d(vn). Then the
m-degree, m(G), of G is defined by m(G) = max{i : d(vi) ≥ i − 1, 1 ≤ i ≤ n}. For any graph G, b(G) ≤ m(G) ≤ ∆(G) + 1
where ∆(G) is the maximum degree of G. Also for any regular graph G,m(G) = ∆(G)+ 1.

Let us recall the definition of strongly regular graphs and b-spectrum of a graph.
A graphG is strongly regular if there are parameters (n, k, λ, µ) such thatG has order n, regularity k, every pair of adjacent

vertices have λ common neighbors, and every pair of non-adjacent vertices have µ common neighbors.
Graphs which have a b-coloring using k colors, for every k such that χ(G) ≤ k ≤ b(G) are known as b-continuous

graphs. There are graphs which are not b-continuous. For instance, consider G = Kn,n − 1F (complete bipartite graph on
2n vertices except a perfect matching), n ≥ 4. One can observe that G has a b-coloring using 2 colors and n colors but none
using k colors where 3 ≤ k ≤ n − 1. The b-spectrum Sb(G) of a graph G is the set of positive integers k, for which G has
a b-coloring using k colors. Clearly, {χ(G), b(G)} ⊆ Sb(G) ⊆ {χ(G), χ(G) + 1, . . . , b(G)}. G is b-continuous if and only if
Sb(G) = {χ(G), χ(G)+ 1, . . . , b(G)}.

The n-hypercube graph denoted by Qn is the graph whose vertices are the 2n symbols a1a2 . . . an where ai = 0 or 1 and
two vertices are adjacent if the symbols differ in exactly one coordinate. If v ∈ V (Qn), then v̄ denotes the complement of v
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got by replacing 0 by 1 and 1 by 0 in v. In case of no ambiguity we write hypercube instead of n-hypercube. For any integer
p ≥ 1, the pth power of a graph G denoted by Gp is a graph obtained from G by adding an edge between every pair of vertices
at a distance of p or less. It is easy to see that G1

= G. Powers of several graph classes have been investigated in the past.
See for instance [3,4,15,16]. The b-chromatic number of powers of paths, cycles and complete caterpillars have been studied
in [6,5,14]. The problem of finding exact value of the chromatic number for Q p

n seems to be a challenging one. This has lead
to finding bounds for the chromatic number of Q p

n . This can be seen in [11,15,16]. The coloring problem on hypercubes and
its powers has been extensively studied and has a vast number of applications to multi computer networks and distributed
computation [2,8].

In this paper, we have obtained bounds for the b-chromatic number of Q p
n for n ≥ 5 and

 n
2


< p < n − 1. Also we

have found the exact value of b(Q p
n ) all n ≥ 3, and p =

 n
2


and p = n − 1. In addition, by using Erdös–Ko–Rado theorem

on intersecting families [7] and a result of D.J. Kleitman (see [12]), we have determined the clique number of Q p
n for n ≥ 3.

Finally we have shown that the coloring technique used for finding the b-chromatic number of Q ⌊
n
2⌋

n helps us in showing
that χ(Q p

n ) = 2n−1 for n ≥ 2 and


2(n−1)
3


≤ p ≤ n− 1.

2. Bounds for the b-chromatic number of powers of hypercubes

The following are some observations that can be made of Q p
n .

Observation 2.1. The graph Q p
n is

(i)
p

i=1

n
i


regular and vertex-transitive.

(ii) The diameter of Q p
n is


n
p


.

(iii) For p ≥ n, b(Q p
n ) = 2n.

Let us start by finding the b-chromatic number of Q n−1
n .

Theorem 2.2. The b-chromatic number of Q n−1
n is 2n−1 for all n ≥ 2.

Proof. Let us consider the graph Q n−1
n . Since v̄ is the only vertex at distance n from v in Qn, each vertex v is non-adjacent

only to its complement v̄. Hence the graph Q n−1
n is isomorphic to the complement of a perfect matching on 2n vertices. The

graph Q n−1
n has a clique of size 2n−1, which implies that b(Q n−1

n ) ≥ 2n−1. In any b-coloring of Q n−1
n the non-adjacent vertices

v and v̄ must receive the same color since all the other vertices are common neighbors of both v and v̄. Also there are 2n−1

such pairs. Hence b(Q n−1
n ) = 2n−1. �

Fact 2.3. (i)
n
k


+

 n
k−1


=

n+1
k


, 1 ≤ k ≤ n.

(ii) If n is even then 2
 n

2−1
i=0

n−1
i


= 2n−1

=
 n

2−1
i=0

n
i


+

n
n
2


/2.

Next, we shall find the b-chromatic number of Q
⌊
n
2 ⌋

n . For doing this, we first prove the following lemma on the number
of common neighbors of any two adjacent vertices in powers of hypercubes.

Lemma 2.4. For n ≥ 2 and 1 ≤ p ≤ n, the number of common neighbors of any two adjacent vertices in Q p
n is at most

2
p−1

i=1

n−1
i


. Equality holds if and only if p = 2, n− 1, n.

Proof. Let λ(x, y) denote the number of common neighbors of any two adjacent vertices x and y in G, where G = Q p
n . For

p = 1, λ(x, y) = 0 for all xy ∈ E(Qn). For p = n− 1, as mentioned earlier the graph Q n−1
n is isomorphic to the complement

of a perfect matching on 2n vertices. Clearly for any two adjacent vertices x, y ∈ V (Q n−1
n ), λ(x, y) = 2n

−4 = 2
n−2

i=1

n−1
i


.

Finally when p = n,Q p
n is isomorphic to K2n and hence equality follows immediately.

Now let us consider p such that 2 ≤ p ≤ n− 2. Since Qn is distance-transitive, Qn is also distance-regular and hence for
any two vertices v and w, the number of vertices at distance j from v and at distance k from w depends only upon j, k, and
i = d(v, w). Thus in Qn, for any two positive integers l and p, the number of vertices which are at a distance of at most p
from any two vertices whose distance is l will be same. Therefore it will suffice to find the number of common neighbors
of 00 . . . 0 with its adjacent vertices in Q p

n . Let us start by considering u = 00 . . . 0. Also let Vi, 0 ≤ i ≤ n denote the set of
vertices which are at a distance of i from u in Qn. Let v = b1b2 · · · bn ∈ Vl, 1 ≤ l ≤ p and let I = {k |1 ≤ k ≤ n and bk = 1}
and J = {k |1 ≤ k ≤ n and bk = 0}. Clearly |I| = l and |J| = n− l. Now let Z denote the set of vertices that differ from v at i
places in I and j places in J . Here it is not difficult to observe the following.

(A) |Z | =
l
i

n−l
j


(B) Z ⊆ Vl−i+j
(C) the vertices in Z are the only vertices which are at a distance of i+ j from v belonging to Vl−i+j in Qn.
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