ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On *b*-coloring of powers of hypercubes

P. Francis, S. Francis Raj*

Department of Mathematics, Pondicherry University, Puducherry-605014, India

ARTICLE INFO

Article history: Received 24 March 2016 Received in revised form 1 February 2017 Accepted 20 March 2017 Available online xxxx

Keywords: b-coloring b-chromatic number Hypercube Power of a graph

ABSTRACT

A *b*-coloring of a graph *G* with *k* colors is a proper coloring of *G* using *k* colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer *k* for which *G* has a *b*-coloring using *k* colors is the *b*-chromatic number b(G) of *G*. In this paper, we have obtained bounds for the *b*-chromatic number of Q_n , namely Q_n^p , for $n \ge 5$ and $\lfloor \frac{n}{2} \rfloor . Also we have found the exact value of the$ *b* $-chromatic number of <math>Q_n^p$ for $n \ge 3$, and $p = \lfloor \frac{n}{2} \rfloor$ and p = n - 1. In addition, we have determined the clique number of Q_n^p for $n \ge 3$ and the chromatic number of Q_n^p for $n \ge 2$ and $\lfloor \frac{2(n-1)}{3} \rfloor \le p \le n - 1$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. A *b*-coloring of a graph is a proper coloring of the vertices of *G* such that each color class contains a color dominating vertex (c.d.v.), that is, a vertex which is adjacent to at least one vertex of every other color class. The largest positive integer *k* for which *G* has a *b*-coloring using *k* colors is the *b*-chromatic number b(G) of *G*. From the definition of $\chi(G)$, we observe that each color class of a χ -coloring contains a c.d.v. Thus $\omega(G) \leq \chi(G) \leq b(G)$, where $\omega(G)$ is the size of a maximum clique of *G*. The concept of *b*-coloring was introduced by Irving and Manlove [9] in analogy to the achromatic number of a graph *G*. They have shown that the determination of b(G) is *NP*-hard for general graphs, but polynomial for trees. Some of the references in *b*-coloring are [1,6,5,13].

Suppose that the vertices of a graph *G* are ordered as $v_1, v_2, ..., v_n$ such that $d(v_1) \ge d(v_2) \ge \cdots \ge d(v_n)$. Then the *m*-degree, m(G), of *G* is defined by $m(G) = \max\{i : d(v_i) \ge i - 1, 1 \le i \le n\}$. For any graph *G*, $b(G) \le m(G) \le \Delta(G) + 1$ where $\Delta(G)$ is the maximum degree of *G*. Also for any regular graph *G*, $m(G) = \Delta(G) + 1$.

Let us recall the definition of strongly regular graphs and *b*-spectrum of a graph.

A graph *G* is strongly regular if there are parameters (n, k, λ, μ) such that *G* has order *n*, regularity *k*, every pair of adjacent vertices have λ common neighbors, and every pair of non-adjacent vertices have μ common neighbors.

Graphs which have a *b*-coloring using *k* colors, for every *k* such that $\chi(G) \le k \le b(G)$ are known as *b*-continuous graphs. There are graphs which are not *b*-continuous. For instance, consider $G = K_{n,n} - 1F$ (complete bipartite graph on 2*n* vertices except a perfect matching), $n \ge 4$. One can observe that *G* has a *b*-coloring using 2 colors and *n* colors but none using *k* colors where $3 \le k \le n - 1$. The *b*-spectrum $S_b(G)$ of a graph *G* is the set of positive integers *k*, for which *G* has a *b*-coloring using *k* colors. Clearly, $\{\chi(G), b(G)\} \subseteq S_b(G) \subseteq \{\chi(G), \chi(G) + 1, \dots, b(G)\}$. *G* is *b*-continuous if and only if $S_b(G) = \{\chi(G), \chi(G) + 1, \dots, b(G)\}$.

The *n*-hypercube graph denoted by Q_n is the graph whose vertices are the 2^n symbols $a_1a_2 \dots a_n$ where $a_i = 0$ or 1 and two vertices are adjacent if the symbols differ in exactly one coordinate. If $v \in V(Q_n)$, then \overline{v} denotes the complement of v

* Corresponding author. E-mail addresses: selvafrancis@gmail.com (P. Francis), francisraj_s@yahoo.com (S. Francis Raj).

http://dx.doi.org/10.1016/j.dam.2017.03.005 0166-218X/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: P. Francis, S. Francis Raj, On *b*-coloring of powers of hypercubes, Discrete Applied Mathematics (2017), http://dx.doi.org/10.1016/j.dam.2017.03.005

2

ARTICLE IN PRESS

P. Francis, S. Francis Raj / Discrete Applied Mathematics 🛚 (🖬 🖬 🖉 🖬 🖬 🖛

got by replacing 0 by 1 and 1 by 0 in v. In case of no ambiguity we write hypercube instead of n-hypercube. For any integer $p \ge 1$, the pth power of a graph G denoted by G^p is a graph obtained from G by adding an edge between every pair of vertices at a distance of p or less. It is easy to see that $G^1 = G$. Powers of several graph classes have been investigated in the past. See for instance [3,4,15,16]. The b-chromatic number of powers of paths, cycles and complete caterpillars have been studied in [6,5,14]. The problem of finding exact value of the chromatic number for Q_n^p seems to be a challenging one. This has lead to finding bounds for the chromatic number of Q_n^p . This can be seen in [11,15,16]. The coloring problem on hypercubes and its powers has been extensively studied and has a vast number of applications to multi computer networks and distributed computation [2,8].

In this paper, we have obtained bounds for the *b*-chromatic number of Q_n^p for $n \ge 5$ and $\lfloor \frac{n}{2} \rfloor . Also we have found the exact value of <math>b(Q_n^p)$ all $n \ge 3$, and $p = \lfloor \frac{n}{2} \rfloor$ and p = n - 1. In addition, by using Erdös–Ko–Rado theorem on intersecting families [7] and a result of D.J. Kleitman (see [12]), we have determined the clique number of Q_n^p for $n \ge 3$. Finally we have shown that the coloring technique used for finding the *b*-chromatic number of $Q_n^{\lfloor \frac{n}{2} \rfloor}$ helps us in showing that $\chi(Q_n^p) = 2^{n-1}$ for $n \ge 2$ and $\lfloor \frac{2(n-1)}{3} \rfloor \le p \le n - 1$.

2. Bounds for the *b*-chromatic number of powers of hypercubes

The following are some observations that can be made of Q_n^p .

Observation 2.1. The graph Q_n^p is

- (i) $\sum_{i=1}^{p} {n \choose i}$ regular and vertex-transitive.
- (ii) The diameter of Q_n^p is $\left\lceil \frac{n}{p} \right\rceil$.

(iii) For $p \ge n$, $b(Q_n^p) = 2^n$.

Let us start by finding the *b*-chromatic number of Q_n^{n-1} .

Theorem 2.2. The *b*-chromatic number of Q_n^{n-1} is 2^{n-1} for all $n \ge 2$.

Proof. Let us consider the graph Q_n^{n-1} . Since \bar{v} is the only vertex at distance *n* from *v* in Q_n , each vertex *v* is non-adjacent only to its complement \bar{v} . Hence the graph Q_n^{n-1} is isomorphic to the complement of a perfect matching on 2^n vertices. The graph Q_n^{n-1} has a clique of size 2^{n-1} , which implies that $b(Q_n^{n-1}) \ge 2^{n-1}$. In any *b*-coloring of Q_n^{n-1} the non-adjacent vertices *v* and \bar{v} must receive the same color since all the other vertices are common neighbors of both *v* and \bar{v} . Also there are 2^{n-1} such pairs. Hence $b(Q_n^{n-1}) = 2^{n-1}$.

Fact 2.3. (i) $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}, 1 \le k \le n.$ (ii) If *n* is even then $2\sum_{i=0}^{\frac{n}{2}-1} \binom{n-1}{i} = 2^{n-1} = \sum_{i=0}^{\frac{n}{2}-1} \binom{n}{i} + \binom{n}{\frac{n}{2}}/2.$

Next, we shall find the *b*-chromatic number of $Q_n^{\lfloor \frac{n}{2} \rfloor}$. For doing this, we first prove the following lemma on the number of common neighbors of any two adjacent vertices in powers of hypercubes.

Lemma 2.4. For $n \ge 2$ and $1 \le p \le n$, the number of common neighbors of any two adjacent vertices in Q_n^p is at most $2\sum_{i=1}^{p-1} {n-1 \choose i}$. Equality holds if and only if p = 2, n - 1, n.

Proof. Let $\lambda(x, y)$ denote the number of common neighbors of any two adjacent vertices x and y in G, where $G = Q_n^p$. For p = 1, $\lambda(x, y) = 0$ for all $xy \in E(Q_n)$. For p = n - 1, as mentioned earlier the graph Q_n^{n-1} is isomorphic to the complement of a perfect matching on 2^n vertices. Clearly for any two adjacent vertices $x, y \in V(Q_n^{n-1}), \lambda(x, y) = 2^n - 4 = 2 \sum_{i=1}^{n-2} {n-1 \choose i}$. Finally when p = n, Q_n^p is isomorphic to K_{2^n} and hence equality follows immediately.

Now let us consider p such that $2 \le p \le n - 2$. Since Q_n is distance-transitive, Q_n is also distance-regular and hence for any two vertices v and w, the number of vertices at distance j from v and at distance k from w depends only upon j, k, and i = d(v, w). Thus in Q_n , for any two positive integers l and p, the number of vertices which are at a distance of at most pfrom any two vertices whose distance is l will be same. Therefore it will suffice to find the number of common neighbors of $00 \dots 0$ with its adjacent vertices in Q_n^p . Let us start by considering $u = 00 \dots 0$. Also let V_i , $0 \le i \le n$ denote the set of vertices which are at a distance of i from u in Q_n . Let $v = b_1b_2 \cdots b_n \in V_l$, $1 \le l \le p$ and let $I = \{k \mid 1 \le k \le n \text{ and } b_k = 1\}$ and $J = \{k \mid 1 \le k \le n \text{ and } b_k = 0\}$. Clearly |I| = l and |J| = n - l. Now let Z denote the set of vertices that differ from v at iplaces in I and j places in J. Here it is not difficult to observe the following.

$$(\mathsf{A}) |Z| = \binom{l}{i} \binom{n-l}{i}$$

$$(\mathbf{B})Z\subseteq V_{l-i+j}$$

(C) the vertices in Z are the only vertices which are at a distance of i + j from v belonging to V_{l-i+j} in Q_n .

Please cite this article in press as: P. Francis, S. Francis Raj, On *b*-coloring of powers of hypercubes, Discrete Applied Mathematics (2017), http://dx.doi.org/10.1016/j.dam.2017.03.005

Download English Version:

https://daneshyari.com/en/article/4949677

Download Persian Version:

https://daneshyari.com/article/4949677

Daneshyari.com