On b-coloring of powers of hypercubes

P. Francis, S. Francis Raj*
Department of Mathematics, Pondicherry University, Puducherry-605014, India

A R TICLE INFO

Article history:

Received 24 March 2016
Received in revised form 1 February 2017
Accepted 20 March 2017
Available online xxxx

Keywords:

b-coloring
b-chromatic number
Hypercube
Power of a graph

Abstract

A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number $b(G)$ of G. In this paper, we have obtained bounds for the b-chromatic number of powers of Q_{n}, namely Q_{n}^{p}, for $n \geq 5$ and $\left\lfloor\frac{n}{2}\right\rfloor<p<n-1$. Also we have found the exact value of the b-chromatic number of Q_{n}^{p} for $n \geq 3$, and $p=\left\lfloor\frac{n}{2}\right\rfloor$ and $p=n-1$. In addition, we have determined the clique number of Q_{n}^{p} for $n \geq 3$ and the chromatic number of Q_{n}^{p} for $n \geq 2$ and $\left\lceil\frac{2(n-1)}{3}\right\rceil \leq p \leq n-1$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. A b-coloring of a graph is a proper coloring of the vertices of G such that each color class contains a color dominating vertex (c.d.v.), that is, a vertex which is adjacent to at least one vertex of every other color class. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number $b(G)$ of G. From the definition of $\chi(G)$, we observe that each color class of a χ-coloring contains a c.d.v. Thus $\omega(G) \leq \chi(G) \leq b(G)$, where $\omega(G)$ is the size of a maximum clique of G. The concept of b-coloring was introduced by Irving and Manlove [9] in analogy to the achromatic number of a graph G. They have shown that the determination of $b(G)$ is $N P$-hard for general graphs, but polynomial for trees. Some of the references in b-coloring are [1,6,5,13].

Suppose that the vertices of a graph G are ordered as $v_{1}, v_{2}, \ldots, v_{n}$ such that $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \cdots \geq d\left(v_{n}\right)$. Then the m-degree, $m(G)$, of G is defined by $m(G)=\max \left\{i: d\left(v_{i}\right) \geq i-1,1 \leq i \leq n\right\}$. For any graph $G, b(G) \leq m(G) \leq \Delta(G)+1$ where $\Delta(G)$ is the maximum degree of G. Also for any regular graph $G, m(G)=\Delta(G)+1$.

Let us recall the definition of strongly regular graphs and b-spectrum of a graph.
A graph G is strongly regular if there are parameters (n, k, λ, μ) such that G has order n, regularity k, every pair of adjacent vertices have λ common neighbors, and every pair of non-adjacent vertices have μ common neighbors.

Graphs which have a b-coloring using k colors, for every k such that $\chi(G) \leq k \leq b(G)$ are known as b-continuous graphs. There are graphs which are not b-continuous. For instance, consider $G=K_{n, n}-1 F$ (complete bipartite graph on $2 n$ vertices except a perfect matching), $n \geq 4$. One can observe that G has a b-coloring using 2 colors and n colors but none using k colors where $3 \leq k \leq n-1$. The b-spectrum $S_{b}(G)$ of a graph G is the set of positive integers k, for which G has a b-coloring using k colors. Clearly, $\{\chi(G), b(G)\} \subseteq S_{b}(G) \subseteq\{\chi(G), \chi(G)+1, \ldots, b(G)\}$. G is b-continuous if and only if $S_{b}(G)=\{\chi(G), \chi(G)+1, \ldots, b(G)\}$.

The n-hypercube graph denoted by Q_{n} is the graph whose vertices are the 2^{n} symbols $a_{1} a_{2} \ldots a_{n}$ where $a_{i}=0$ or 1 and two vertices are adjacent if the symbols differ in exactly one coordinate. If $v \in V\left(Q_{n}\right)$, then \bar{v} denotes the complement of v

[^0]got by replacing 0 by 1 and 1 by 0 in v. In case of no ambiguity we write hypercube instead of n-hypercube. For any integer $p \geq 1$, the p th power of a graph G denoted by G^{p} is a graph obtained from G by adding an edge between every pair of vertices at a distance of p or less. It is easy to see that $G^{1}=G$. Powers of several graph classes have been investigated in the past. See for instance $[3,4,15,16]$. The b-chromatic number of powers of paths, cycles and complete caterpillars have been studied in $[6,5,14]$. The problem of finding exact value of the chromatic number for Q_{n}^{p} seems to be a challenging one. This has lead to finding bounds for the chromatic number of Q_{n}^{p}. This can be seen in [11,15,16]. The coloring problem on hypercubes and its powers has been extensively studied and has a vast number of applications to multi computer networks and distributed computation $[2,8]$.

In this paper, we have obtained bounds for the b-chromatic number of Q_{n}^{p} for $n \geq 5$ and $\left\lfloor\frac{n}{2}\right\rfloor<p<n-1$. Also we have found the exact value of $b\left(Q_{n}^{p}\right)$ all $n \geq 3$, and $p=\left\lfloor\frac{n}{2}\right\rfloor$ and $p=n-1$. In addition, by using Erdös-Ko-Rado theorem on intersecting families [7] and a result of D.J. Kleitman (see [12]), we have determined the clique number of Q_{n}^{p} for $n \geq 3$. Finally we have shown that the coloring technique used for finding the b-chromatic number of $Q_{n}^{\left\lfloor\frac{n}{2}\right\rfloor}$ helps us in showing that $\chi\left(Q_{n}^{p}\right)=2^{n-1}$ for $n \geq 2$ and $\left\lceil\frac{2(n-1)}{3}\right\rceil \leq p \leq n-1$.

2. Bounds for the b-chromatic number of powers of hypercubes

The following are some observations that can be made of Q_{n}^{p}.

Observation 2.1. The graph Q_{n}^{p} is

(i) $\sum_{i=1}^{p}\binom{n}{i}$ regular and vertex-transitive.
(ii) The diameter of Q_{n}^{p} is $\left\lceil\frac{n}{p}\right\rceil$.
(iii) For $p \geq n, b\left(Q_{n}^{p}\right)=2^{n}$.

Let us start by finding the b-chromatic number of Q_{n}^{n-1}.
Theorem 2.2. The b-chromatic number of Q_{n}^{n-1} is 2^{n-1} for all $n \geq 2$.
Proof. Let us consider the graph Q_{n}^{n-1}. Since \bar{v} is the only vertex at distance n from v in Q_{n}, each vertex v is non-adjacent only to its complement \bar{v}. Hence the graph Q_{n}^{n-1} is isomorphic to the complement of a perfect matching on 2^{n} vertices. The graph Q_{n}^{n-1} has a clique of size 2^{n-1}, which implies that $b\left(Q_{n}^{n-1}\right) \geq 2^{n-1}$. In any b-coloring of Q_{n}^{n-1} the non-adjacent vertices v and \bar{v} must receive the same color since all the other vertices are common neighbors of both v and \bar{v}. Also there are 2^{n-1} such pairs. Hence $b\left(Q_{n}^{n-1}\right)=2^{n-1}$.

Fact 2.3. (i) $\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}, 1 \leq k \leq n$.
(ii) If n is even then $2 \sum_{i=0}^{\frac{n}{2}-1}\binom{n-1}{i}=2^{n-1}=\sum_{i=0}^{\frac{n}{2}-1}\binom{n}{i}+\binom{n}{\frac{n}{2}} / 2$.

Next, we shall find the b-chromatic number of $Q_{n}^{\left\lfloor\frac{n}{2}\right\rfloor}$. For doing this, we first prove the following lemma on the number of common neighbors of any two adjacent vertices in powers of hypercubes.

Lemma 2.4. For $n \geq 2$ and $1 \leq p \leq n$, the number of common neighbors of any two adjacent vertices in Q_{n}^{p} is at most $2 \sum_{i=1}^{p-1}\binom{n-1}{i}$. Equality holds if and only if $p=2, n-1, n$.
Proof. Let $\lambda(x, y)$ denote the number of common neighbors of any two adjacent vertices x and y in G, where $G=Q_{n}^{p}$. For $p=1, \lambda(x, y)=0$ for all $x y \in E\left(Q_{n}\right)$. For $p=n-1$, as mentioned earlier the graph Q_{n}^{n-1} is isomorphic to the complement of a perfect matching on 2^{n} vertices. Clearly for any two adjacent vertices $x, y \in V\left(Q_{n}^{n-1}\right), \lambda(x, y)=2^{n}-4=2 \sum_{i=1}^{n-2}\binom{n-1}{i}$. Finally when $p=n, Q_{n}^{p}$ is isomorphic to $K_{2^{n}}$ and hence equality follows immediately.

Now let us consider p such that $2 \leq p \leq n-2$. Since Q_{n} is distance-transitive, Q_{n} is also distance-regular and hence for any two vertices v and w, the number of vertices at distance j from v and at distance k from w depends only upon j, k, and $i=d(v, w)$. Thus in Q_{n}, for any two positive integers l and p, the number of vertices which are at a distance of at most p from any two vertices whose distance is l will be same. Therefore it will suffice to find the number of common neighbors of $00 \ldots 0$ with its adjacent vertices in Q_{n}^{p}. Let us start by considering $u=00 \ldots 0$. Also let $V_{i}, 0 \leq i \leq n$ denote the set of vertices which are at a distance of i from u in Q_{n}. Let $v=b_{1} b_{2} \cdots b_{n} \in V_{l}, 1 \leq l \leq p$ and let $I=\left\{k \mid 1 \leq k \leq n\right.$ and $\left.b_{k}=1\right\}$ and $J=\left\{k \mid 1 \leq k \leq n\right.$ and $\left.b_{k}=0\right\}$. Clearly $|I|=l$ and $|J|=n-l$. Now let Z denote the set of vertices that differ from v at i places in I and j places in J. Here it is not difficult to observe the following.
(A) $|Z|=\binom{l}{i}\binom{n-l}{j}$
(B) $Z \subseteq V_{l-i+j}$
(C) the vertices in Z are the only vertices which are at a distance of $i+j$ from v belonging to V_{l-i+j} in Q_{n}.

https://daneshyari.com/en/article/4949677

Download Persian Version:
https://daneshyari.com/article/4949677

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: selvafrancis@gmail.com (P. Francis), francisraj_s@yahoo.com (S. Francis Raj).
 http://dx.doi.org/10.1016/j.dam.2017.03.005
 0166-218X/© 2017 Elsevier B.V. All rights reserved.

