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a b s t r a c t

Considering an integer k and a directed, weighted graph with two distinct nodes s and t ,
the Hop-Constrained Shortest Path Problem looks for a shortest (s, t)-path using at most
k arcs. In this paper, we study the polytope of the convex hull of incidence vectors of
(s, t)-paths using at most k arcs. We present valid inequalities and adaptations of known
concepts such as cloning and a unique representation of facets. The main focus will be
on one particular family of valid inequalities, the family of Jump Inequalities. Thereby, the
main contribution will be a characterization of the members of the family inducing facets.
Furthermore, all possibilities to lift the remaining inequalities will be defined. The analysis
of Jump Inequalities will be concluded by further results concerning the equivalence of
inequalities as well as their Chvátal rank.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The hop-constrained shortest path problem

For a given weighted, directed graph G = (V , A, c) with cost function c : A → R, two distinct nodes s ≠ t ∈ V and an
integer k ≥ 3, the Hop-Constrained Shortest Path Problem (HSPP) asks for a minimal (s, t)-path (with respect to c) that uses
atmost k arcs. Thereby, given two distinct nodes s ≠ t ∈ V , an (s, t)-path is defined as a collection of nodes P = (v1, . . . , vl)
such that v1 = s, vl = t , (vi, vi+1) ∈ A ∀i ∈ {1, . . . , l − 1} and vi ≠ vj ∀i ≠ j ∈ {1, . . . , l}.

Note that paths are assumed to be elementary, thus a path may not visit nodes more than once. Since any path on |V |

nodes has at most |V | − 1 arcs, we will w.l.o.g. assume that

k ≤ |V | − 1.

The Hop-Constrained Shortest Path Problem appears as a subproblem in the context of Column Generation or Lagrangian
Relaxation, mostly in telecommunication network design problems. In this problem setting, hop-constraints assert the
quality of the networks to be constructed by bounding the probability of losing one of the data packages to be transferred
(see for instance [1,14,15,9]). If c((u, v)) ≥ 0 ∀(u, v) ∈ A, the problem is easily solvable in polynomial time (cf. [12, ND30]
or [20] for an early algorithm). However, in the scenario of Column Generation or Lagrangian Relaxation, this assumption is
not true in general.

If c((u, v)) ∈ R ∀(u, v) ∈ A, negative arc weights can be interpreted as an incentive for the subproblem to visit distinct
nodes needed in the previous iteration of the master problem. In these cases only non-elementary optimal solutions may
exist and standard labelling algorithms (cf. [19] for an overview) solving the relaxed problem of finding a non-elementary
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path will return undesired results. Similar problems arise when using Lagrangian Relaxation to relax constraints connecting
different paths in the master problem.

These observations coincide with the fact that the problemwith arbitrary arc weights is NP-complete, as on a graphwith
negative arc weight c , the Directed Hamiltonian Path Problem with start and end node (see, e.g., [12, GT39]) is equivalent
to the Hop-Constrained Shortest Path Problem (as already mentioned by [8] or for a related problem by [24]). One can
still modify labelling algorithms to incorporate the requirement of elementary paths, however in practice this leads to an
increase in computation times allowing only small instances to be solved. On the other hand, the solutions obtained by the
relaxed problem searching non-elementary pathswill usually contain cycles and are therefore not desirable, as thisweakens
the bound obtained by the master problem of the Column Generation applied. This is why a closer look at the geometrical
structure of the polytope of hop-constrained paths is important.

The rest of this work is organized as follows. In Section 2 we will outline results concerning the equivalence of facets as
well as the cloning of facets. These concepts have originally been developed for the Travelling Salesman Problem and will be
transferred to the HSPP in this work. Known facets will be summarized in Section 3. In Section 4 further details concerning
one family of inequalities – namely Jump Inequalities – will be presented. We will introduce the main contribution of this
work, a complete characterization of facet-defining Jump Inequalities as well as all possibilities to lift them in case they do
not define facets. The section will be concluded by further characteristics of Lifted Jump Inequalities.

1.2. Notation and mathematical model

In the following, we will consider the HSPP on a directed weighted graph Dn = (V , A, c) where n := |V |, s ∈ V is the
start or source node and t ∈ V is the end or target node. The arc set A :=


(u, v) ∈ V 2

: u ≠ v, u ≠ t, v ≠ s

will contain

all possible arcs but the ones entering s or leaving t .
The following notation will be used for certain sets of arcs:

• δ+(S) := {(u, v) ∈ A : u ∈ S, v ∈ V \ S} will define the set of outgoing arcs of node set S ⊂ V . For δ+({s}) we will write
δ+(s) for short.

• δ−(S) := {(u, v) ∈ A : u ∈ V \ S, v ∈ S} denotes the set of incoming arcs of node set S ⊂ V . For δ−({s}) we will write
δ−(s).

• For S, T ⊆ V we will write (S : T ) := {(u, v) ∈ A : u ∈ S, v ∈ T , u ≠ v} for the set of all arcs starting in S and ending in
T .

• Given a weight x : A → R on the arcs (as for example the value of a variable or the given cost function) we use the short
notation xuv := x ((u, v)) for the weight of arc (u, v) ∈ A.

• When considering some set of arcs A′
⊆ Awewill denote by x(A′) :=


(u,v)∈A′ xuv the accumulated value of weight x on

these arcs.

For an integer n ∈ N, we denote all positive integers less or equal than n by

[n] := {1, . . . , n} .

Given an inequality α⊤x ≤ α0 in Rn with α ∈ Rn, α0 ∈ R, we denote by

F(α, α0) :=

x ∈ R

n
: α⊤x = α0


the corresponding hyperplane. For a vector α ∈ Rn and a set T ⊂ [n], we use

αT := (αi)i∈T

to name the subvector defined by index set T .
Last, for a given set S, a subset S ′

⊂ S and an element i ∈ S we use the characteristic function

1S′(i) :=


1 if i ∈ S ′

0 if i ∉ S ′

that takes value 1 if and only if element i is contained in S ′.
To define the polytope of hop-constrained paths, we will first model the corresponding optimization problem of finding

the optimal path with respect to c using at most k arcs. For that purpose, we will use binary variables xuv for all (u, v) ∈ A
with

xuv :=


1 if (u, v) is part of the path
0 otherwise. (1)

The vector x ∈ {0, 1}|A| defined in (1) will also be called the incidence vector of the corresponding path, the two terms will
be used synonymously. Given an inequality α⊤x ≤ α0 and a path, we will denote the path as tight if for the corresponding
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