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a b s t r a c t

In the classical interval scheduling type of problems, a set of n jobs, characterized by
their start and end time, needs to be executed by a set of machines, under various
constraints. In this paper we study a new variant in which the jobs need to be assigned
to at most k identical machines, such that the minimum number of machines that are
busy at the same time is maximized. This is relevant in the context of genome sequencing
and haplotyping, specifically when a set of DNA reads aligned to a genome needs to be
pruned so that no more than k reads overlap, while maintaining as much read coverage
as possible across the entire genome. We show that the problem can be solved in time
min

(
O(n2 log k/log n),O(nk log k)

)
by using max-flows. We also give an O(n log n)-time

approximation algorithm with approximation ratio ρ =
k

⌊k/2⌋ .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Interval scheduling is a classical problem in combinatorial optimization. The input usually consists of n jobs, such that
each job j needs to be executed in the time interval [sj, fj), by any availablemachine. In themost basic variant of this problem,
each machine is always available, can process at most one job at a time, and once it starts executing a job it does so until it is
finished. The task is to process all jobs using the minimum number of machines [10]. This is solvable in time O(n log n) [8].
In another problem variant, known as interval scheduling with given machines, there are only k available machines, and the
execution of each job brings a specified profit. The task is to schedule a maximum-profit subset of jobs. This is also solvable
in polynomial time, for example by min-cost flows [1,2]. Some problem variants are NP-hard, for example if each job can be
executed only by a given subset of machines [1], or if each machine is available during a specific period of time [3]. See the
surveys [10,11] for further references.

Most previous work has focused on either maximizing the profit obtained from executing the jobs, or on minimizing the
resources used by the jobs. In this paperwe study a newproblemvariantwith a rather different objective function,motivated
by a new application of interval scheduling in genome haplotyping with high-throughput DNA sequencing. In this variant,
which we call interval scheduling maximizing minimum coverage, we need to select a subset of jobs to be executed by a given
number k of machines, such that the minimum, over the number of machines that are busy at any given time, is as large as
possible. Fig. 1 gives an example. To the best of our knowledge this variant has not been addressed before.

The rest of the paper is structured as follows. In Section 2 we discuss our original motivation in the context of
high-throughput DNA sequencing and give the precise problem formulation. In Section 3 we present a reduction to
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Fig. 1. An instance of interval scheduling maximizing minimum coverage in which 8 intervals are given and k = 2 machines are available to execute
them. Observe that in all solutions to this problem three disjoint intervals of length 5 need to be removed, leading to a solution that executes 5 jobs and
the number of idle machines is never greater than 1. However, in the solutions to the classical interval scheduling with given machines problem, the two
intervals of length 7 are removed both in the case when all intervals have the same profit, and in the case when the profit of an interval equals its length.

a max-flow problem, which leads to an O(n2 log k/log n) solution for our problem. In Section 4 we present a tailored
max-flow algorithm that runs in O(nk log k) time, which is faster than the previous when k = o(n/log n). Since for large
k the best complexity is almost quadratic, we also study a way to find approximate solutions: In Section 5 we present an
O(n log n)-time k

⌊k/2⌋ -approximation algorithm.

2. Haplotype phasing, read pruning and interval scheduling

High-throughput sequencing is a technique developed over the last decade that can produce millions of DNA fragments,
called reads, from random positions across the genome of an individual. Depending on the technology, their length can be
from hundreds to thousands of characters. Many analyses are carried out by first aligning the reads to a reference genome
sequence of the species, and studying, for example, the genetic variations of the individual with respect to the reference (see
e.g. [14]). A more detailed analysis, called haplotype phasing, also takes into account the fact that in some species, such as
humans, each chromosome is present in two copies, inherited from each parent. In this context it is also desirable to assign
the genetic variations to the copy of the chromosome where they are present.

Since real data has sequencing and alignment errors, a well-known problem formulation asks for the minimum number
of corrections that enables a consistent partitioning of the input set of reads into the two copies of the chromosome they
were sequenced from. This problem is calledminimum error correction andwas introduced by Lippert et al. in [13] and proved
NP-hard in [4]. A practical algorithm for this problem was proposed in [16], having a time complexity of O(2k−1m), wherem
is the proportional to the length of the genome, and k is themaximum number of reads covering any position of the genome.
This algorithm is particularly useful because its runtime is independent of the read length.

The higher the number of reads, and the more uniform they are distributed across the genome, the more accurate
the solution to the minimum error correction problem is in practice. However, the O(2k−1m) time complexity makes this
algorithm feasible only for small values of k. In its implementation [16], for every genomic position with too high read
coverage, some reads are removed at random. However, this may arbitrarily lead to some other positions having a too low
coverage for accurate results. In this paper we study the problem of pruning the read set such that the maximum read
coverage is less than a given integer k, and the minimum coverage across all genomic positions is as high as possible.

Our formal definition is as follows.Wewill represent each read i as an interval [si, fi).Wewill assume that 0 ⩽ si < fi < N .
Given an interval [si, fi) and a point p ∈ [si, fi), we say that [si, fi) covers p. If p ∈ (si, fi) we say that [si, fi) strictly
covers p. Given a set S = {[si, fi) : i ∈ {1, . . . , n} | si < fi} of intervals, and a point p we define the coverage
of p as covS(p) = |{[si, fi) ∈ S|[si, fi) covers p}|. When clear from the context, the subscript S will be omitted. We also
define the maximum coverage of S as maxcov(S) = maxp∈[0,N)covS(p). Likewise, we define the minimum coverage of S as
mincov(S) = minp∈[0,N)covS(p). Our problem is the following one.

Problem 1 (Interval scheduling maximizing minimum coverage).

INPUT. A set S = {[si, fi) : i ∈ {1, . . . , n} | si < fi} of intervals and an integer k.
TASK. Find an S ′

⊆ S such that maxcov(S ′) ⩽ k and maximizing mincov(S ′).

Note that if we only keep the first condition, namely S ′
⊆ S such that maxcov(S ′) ⩽ k our problem would be exactly the

one of finding a feasible set of jobs to be scheduled on k machines.

3. The reduction to max-flows

In this sectionwe show that the problem is solvable in timeO(n2 log k/log n) bymax-flows. First, we consider the decision
version of the maximization problem, as follows.

Problem 2 (Interval scheduling with bounded coverage).

INPUT. A set S = {[si, fi) : i ∈ {1, . . . , n} | si < fi} of intervals, and integers k, t .
TASK. Decide if there exists an S ′

⊆ S such that maxcov(S ′) ⩽ k and mincov(S ′) ⩾ t , and if yes, output such S ′.
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