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1. Introduction

The notion of packing colouring comes from the area of frequency planning in wireless networks, and was introduced by
Goddard et al. in [ 10] under the name broadcast colouring. A packing k-colouring of a graph G is a partition of V(G) into disjoint
sets Xj, ..., Xk, so that, for eachi € {1, ..., k} and x, y € X;, the minimum distance between x and y in G, dg(x, y), is greater
than i. In other words, vertices with the same colour i are pairwise at distance greater than i. The packing chromatic number
of a graph G, denoted by x,(G), is the smallest integer k so that there exists a packing k-colouring. A packing colouring is a
packing k-colouring, for some k, and we sometimes drop the descriptor “packing”, when it is clear from the context, to talk
simply of a (k-)colouring. Packing colourings have application in frequency planning where one might imagine a broadcast
at a higher wavelength travelling further, thus retransmission towers would not be required at such proximity as those for
lower wavelengths (see [ 10]). Broadcast colouring seems to have been renamed packing colouring in the work [1].

The Cartesian product of two graphs G and H, denoted GOH, is the graph with vertex set G x H and edge set

{((x1, 1), (X2, ¥2)) : (X1 = X2 A(y1, ¥2) € E(H)) V (y1 = y2 A (%1, %2) € E(G))}.
The infinite square lattice (grid) P;OPy is the graph with vertex set Z x Z and edge set
{((x1,¥1), (2, ¥2)) : (1 = X2 A ly1 = Y2 = 1) V(71 = Y2 A %1 — x2| = 1)}

If Pz is the graph with vertices Z and edges (x, y) given by |x — y| = 1, then the infinite square lattice is the product PPy,
which explains our notation.

The packing chromatic number of the infinite square lattice, x,(PzOPz), has been the topic of a number of papers. Goddard
etal. showed in [10] that x,(Pz0Pz) is finite, more precisely between 9 and 23 (inclusive). In contrast, the packing chromatic
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number of the infinite triangular lattice is infinite [7], though the packing chromatic number of the infinite hexagonal lattice
is 7 [16]. The upper bound of [10] is witnessed by a finite grid of dimension m x m which can be endlessly translated
up-down and left-right in order to periodically cover the plane. We call this a periodic packing colouring. Such a periodic
packing colouring may be seen as a packing colouring of the product C,,0Cy,,, where C;, is the undirected m-cycle.

Fiala and Lidicky [6] then improved the lower bound to 10, and Schwenk [20] improved the upper bound to 22. Later,
Ekstein, Fiala, Holub and Lidicky used a computer to improve the lower bound to 12 [4] and Soukal and Holub used a clever
Simulated Annealing algorithm to improve the upper bound to 17 [23]. Thus these last bounds, in contrast to those that went
before, both made fundamental use of mechanical computation.

Further related work. We are not the first to use SAT-solvers in Discrete Mathematics, especially at the interface between
Combinatorics and Number Theory. Fascinating progress has been made towards the computation of van der Waerden [3,12]
and Ramsey [8] numbers (see also the thesis [17]). Indeed, the case ¢ = 2 of the Erdds Discrepancy Conjecture has been
settled using this technology [ 15]. Furthermore, we are not the first to use SAT-solving techniques in packing colouring [22]
(though we were not aware of this article when we obtained our results). In [22], the authors translate questions of packing
colouring for various finite graphs (including grids) to SAT problems and instances of Integer Programming. The paper [21],
by the same authors, which relates similar techniques for other graph colouring problems, should also be mentioned here.

We note some recent contributions in the situation in which packing distances considered for the colours may be specified
individually (whereas for us the packing distance and the colour number coincide). This is the situation in [11] and [9].
Research into such alternative packing colourings has gone recently in a more combinatorial direction, see the recent
paper [2] for a discussion.

A number of works, both older and new, address questions of computational complexity for determining packing
chromatic numbers. It is known that determining the packing chromatic number for general graphs is NP-hard [10]; indeed
this remains NP-hard even for trees [5]! Regarding packing chromatic number for Cartesian products of cycles, we should
additionally mention the work of [ 14].

Our story. The first author heard of this problem at a talk by Bernard Lidicky at the 8th Slovenian Conference on Graph
Theory (Bled 2011). While this problem may not be especially important, few who worked on it can doubt that it is very
addictive, and further provides a vehicle through which to ponder different algorithmic techniques. One of the curiosities
of the problem is that we have little theoretical insight into it. Note, however, that it is not possible to cover asymptotically
more than half of the vertices of the infinite square lattice with the colour 1. Now, suppose there is a packing colouring for
the infinite square lattice involving k colours:

o does there exist an m together with an m x m grid that witnesses a periodic packing k-colouring?

e does there exist a packing k-colouring that has colour 1 at maximal density (1/2) asymptotically?

e does there exist a packing k-colouring so that, for i < j < k the asymptotic frequency of colour i is no more than the
asymptotic frequency of j?

The answers to the above questions are still not known (though we know the answer to the first question is affirmative, for
k > 15).

Our contribution. In the present note we improve the upper bound from 17 to 16 and then to 15. As with all these upper
bounds we give a packing colouring based on a finite grid which can be translated up-down and left-right to give a periodic
packing colouring of the infinite square lattice (grid). We make essential use of the periodic 24 x 24 17-colouring given by
Soukal-Holub in [23], which is drawn in Fig. 2.

For our 16-colouring, we take the Soukal-Holub colouring and remove colours 8 to 17, then we blow this up from 24 x 24
to 48 x 48 by taking four copies of it (2 x 2 in shape). We then give the resulting partially coloured grid to a SAT-solver to
see if a 16-colouring is possible, which it turns out it is. Our 16-colouring is specified as the obvious periodic translation of
the colouring in Fig. 1. Note that our method with a SAT-solver does not run efficiently unless several colours are planted,
that is some entries (vertices) are preset to a certain colour. For example, with just colour 1 planted at maximal density of
1/2 on a 24 x 24 grid, the computation runs, on the machines we are using, indefinitely. Planting colours may be seen as a
form of pre-colouring, thus the objects given to the SAT-solver are partially (pre-)coloured grids. Planting colours allows us
also to break the problem’s symmetries.

For our 15-colouring, we take the Soukal-Holub colouring and remove colours 6 to 17, then blow this up from 24 x 24
to 72 x 72. This colouring is depicted in Fig. 4.

We have additionally improved the lower bound by ruling out the possibility of a certain 12-colouring on a 14 x 14 grid.
Here we derive our result by producing a SAT instance that is found to be unsatisfiable.

2. Encoding and computation

Let [n] == {1, ..., n}. Our basic encoding, for investigating the upper bound, involves variables P; x, whose being true
asserts that position (i, j) in some m-colouring, periodic on a grid of size n x n, is set to colour k. We thus need big
clauses of the form P;j; v P;j, V --- V Pijn, for each (i,j) € [n]?, together with constraints —P;jx V =Py j  whenever
the distance between (i, j) and (7', j'), d((i, j), (', j')), is less than k. This distance must, of course be calculated toroidally, i.e.
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