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a b s t r a c t

We study the asymptotic dynamical properties of Boolean networkswithout local negative
cycle. While the properties of Boolean networks without local cycle or without local
positive cycle are rather well understood, recent literature raises the following two
questions about networks without local negative cycle. Do they have at least one fixed
point? Should all their attractors be fixed points? The two main results of this paper are
negative answers to both questions: we show that and-nets without local negative cycle
may have no fixed point, and that Boolean networks without local negative cycle may have
antipodal attractive cycles.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A Boolean network is a map f from Fn
2 to itself, where n is a positive integer and F2 is the two-element field. We view

f as representing the dynamics of n interacting components which can take two values, 0 and 1: at a state x ∈ Fn
2, the

coordinates which can be updated are the integers i ∈ {1, . . . , n} such that fi(x) ≠ xi. Several dynamical systems can
therefore be associated to f , depending on the choice of update scheme. In the synchronous dynamics [8,2], all coordinates
are updated simultaneously (it is simply the iteration of f ), while in the (nondeterministic) asynchronous dynamics [23],
one coordinate is updated at a time, if any. Other dynamics are considered in the literature (e.g. random [7]), as well as
comparisons between update schemes [4].

Boolean networks have plenty of applications. In particular, they have been extensively used as discretemodels of various
biological networks, since the early works of McCulloch and Pitts [9], S. Kauffman [7] and R. Thomas [21].

To a Boolean network f , it is possible to associate, for each state x, a directed graph G (f )(x) representing local influences
between components 1, . . . , n and defined in a way similar to Jacobian matrices for differentiable maps. Local feedbacks,
i.e. cycles in these local interaction graphs G (f )(x), have an impact on fixed points of f : [19] proves that Boolean networks
without local cycle have a unique fixed point.

On the other hand, the edges of G (f )(x) naturally come up with a sign, which is positive in case of a covariant influence
and negative otherwise. Intuitively, when applied to the modeling of, e.g., gene regulatory networks, positive and negative
signs correspond respectively to activatory and inhibitory effects. It is therefore expected that the dynamics associated with
positive and negative cycles (the sign being the product of the signs of the edges) will in general be very different, and
the biologist R. Thomas [22,24] proposed rules relating positive cycles to multistationarity (which corresponds to cellular
differentiation in the field of gene networks) and negative cycles to sustained oscillations (a form of homeostasis).

In terms of Boolean networks, sustained oscillations can be interpreted either by an attractive cycle (a cycle in the
asynchronous dynamics which cannot be escaped), or more generally by a cyclic attractor (a strongly connected component
of the asynchronous dynamics which does not consist in a fixed point). Also notice that the absence of fixed point entails a
cyclic attractor. Therefore, these rules give rise to the following series of questions:
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Fig. 1. A map f : F3
2 → F3

2 and the asynchronous dynamics Γ (f ) associated to it.

Questions. 1. Does a network without local positive cycle have at most one fixed point?
2. Does a network without local negative cycle have at least one fixed point?
3. Does a network with a cyclic attractor have a local negative cycle?
4. Does a network with an attractive cycle have a local negative cycle?

Question 1 is given a positive answer in [13].
Question 2, which is mentioned for instance in [14], is also a negative counterpart of Question 1, and thus motivated by

the above result of [19]. Question 3 is related to the following result: if f has a cyclic attractor, then the global interaction
graph G (f ) obtained by taking the union of the local graphs G (f )(x) has a negative cycle [14]. Several partial results are also
known for local negative cycles [15,17], and are recalled in Section 2.4. In the more general discrete case (with more than
two values), [14] shows that a networkwithout local negative cyclemay have an attractive cycle and no fixed point. A partial
positive answer to Question 4 is known for Boolean networks of a special class called and-nets (in which all dependencies
are conjunctions): and-nets with a special type of attractive cycle, called antipodal, do have a local negative cycle [18].

Theorem A gives a negative answer to Question 2, and hence to Question 3, even for and-nets. In Section 3, we construct
a 12-dimensional and-net with no local negative cycle and no fixed point. The proof relies essentially on a trick for delo-
calizing cycles by expanding and-nets (Section 3.3). Section 3.5 also mentions a consequence for kernels in graph theory
(Theorem A′).

Then Theorem B gives a negative answer to Question 4: in Section 4, we prove that arbitrary Boolean networks without
local negative cycle may have (antipodal) attractive cycles. For this construction, we start with a Boolean network with an
antipodal attractive cycle, and thenmodify theneighborhoodof this attractive cycle so as to delocalize all negative cycles. The
proof that the resulting network has indeed no local negative cycle is simplified by using some isometries of Fn

2 (Sections 4.2
and 4.3). Wemay remark that the metric structure of Fn

2 was themain ingredient for unsigned cycles and positive cycles too
(see [18]), though the proofs were apparently very different.

Section 5 includes remarks on non-expansive Boolean networks, hoopings, invertible Jacobian matrices, and reduction
of networks.

2. Definitions and statement of results

Let {e1, . . . , en} denote the canonical basis of the vector space Fn
2, and for each subset I of {1, . . . , n}, let eI =


i∈I e

i,
where the sum is the sum of the field F2. We may remove some brackets and write e1,2 for e{1,2} for instance. For x, y ∈ Fn

2,
d(x, y) denotes the Hamming distance, i.e. the cardinality of the unique subset I ⊆ {1, . . . , n} such that x + y = eI .

2.1. Boolean networks

A Boolean network is a map f : Fn
2 → Fn

2. To such a map, it is possible to associate several dynamics with points of Fn
2 as

the states.
The synchronous dynamics is simply the iteration of f . The asynchronous dynamics is the directed graph Γ (f ) with vertex

set Fn
2 and an edge from x to y when for some i, y = x + ei and fi(x) ≠ xi. It is a nondeterministic dynamics (a state x ∈ Fn

2
can have 0 or several successors) in which at most one coordinate is updated at a time. The coordinates i such that fi(x) ≠ xi
are those which can be updated in state x, and may therefore naturally be viewed as the degrees of freedom of x.

The asynchronous dynamics, illustrated in Fig. 1, can be viewed as a weak form of orientation of the Boolean hypercube
Fn
2, in which each undirected edge is replaced by 0,1 or 2 of the possible choices of orientation.
It is easily seen that f can be recovered from Γ (f ): f (x) = x + eI , where {(x, x + ei), i ∈ I} is the set of edges leaving x in

Γ (f ).
We shall be essentially interested in asymptotic dynamical properties. Both dynamics agree on fixed points. On the

other hand, a trajectory will be a path in the asynchronous dynamics Γ (f ), and an attractor a terminal strongly connected
component ofΓ (f ). An attractorwhich is not a singleton (i.e.whichdoes not consist in a fixedpoint) is called a cyclic attractor.
In particular, a networkwith no fixed pointmust have at least one cyclic attractor. In the case of the fixed-point-free network
f of Fig. 1, the unique cyclic attractor consists in the subgraph of Γ (f ) induced by F3

2 \ {(1, 1, 1)}.
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