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a b s t r a c t

The strong metric dimension of a graph was first introduced by Sebö and Tannier (2004)
as an alternative to the (weak) metric dimension of graphs previously introduced indepen-
dently by Slater (1975) and by Harary and Melter (1976), and has since been investigated
in several research papers. However, the exact worst-case computational complexity of
computing the strong metric dimension has remained open beyond being NP-complete. In
this communication, we show that the problem of computing the strong metric dimension
of a graph of n nodes admits a polynomial-time 2-approximation, admits a O∗

(
2 0.287 n

)
-

time exact computation algorithm, admits a O
(
1.2738k

+ n k
)
-time exact computation

algorithm if the strong metric dimension is at most k, does not admit a polynomial time
(2 − ε)-approximation algorithm assuming the unique games conjecture is true, does not
admit a polynomial time (10

√
5 − 21 − ε)-approximation algorithm assuming P̸= NP,

does not admit a O∗
(
2o(n)

)
-time exact computation algorithm assuming the exponential

time hypothesis is true, and does not admit a O∗
(
no(k)

)
-time exact computation algorithm

if the strong metric dimension is at most k assuming the exponential time hypothesis is
true.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The concept of the metric dimension of graphs was originally introduced independently by Slater [21] and by Harary and
Melter [10] in the 1970s. Their definition involved determining aminimumnumber of nodes such that distance vectors from
each of these nodes to all other nodes (the ‘‘resolving vectors’’) can be used to ‘‘distinguish’’ every pair of nodes in the graph.
Computing themetric dimension is known to be NP-complete [9]. Optimal approximability results for themetric dimension
was provided by Hauptmann et al. in [11] by showing both a (ln n+ ln log2n+1)-approximation based on an approximation
algorithm for test set problems in [2] and also a (1 − ε)-inapproximability for any constant 0 < ε < 1.

Unfortunately, the metric dimension of a graph suffers from two difficulties, namely that the problem does not provably
admit a better-than-logarithmic approximation and the resolving vectors cannot be used to uniquely identify the graph.
The strong metric dimension of a graph was therefore introduced by Sebö and Tannier [20] as an alternative to the above-
mentionedmetric dimension of graphs. The resulting ‘‘strongly’’ resolving vectors can indeed be used to uniquely identify the
given graph. Subsequently, the strong metric dimension has been investigated in several research papers such as [18,19,25].
Let G = (V , E) be a given undirected graph of n nodes. To define the strong metric dimension, we will use the following
notations and terminologies:
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• N(u) =

{
v

⏐⏐ {u, v} ∈ E
}
denotes the set of neighbors of a node u.

• u s
↭v denotes a shortest path from between nodes u and v of length (number of edges) du,v .

• diam(G) = maxu,v∈V
{
du,v

}
denotes the diameter of a graph G.

• A shortest path u s
↭ v is called maximal1 if and only if it is not properly included inside another shortest path, i.e. , if

and only if the predicate(
∀ x ∈ N(u) : d(x, v) ≤ d(u, v)

) ⋀(
∀ y ∈ N(v) : d(y, u) ≤ d(u, v)

)
is true.

• A node x strongly resolves a pair of nodes u and v, denoted by x ▶ {u, v}, if and only if either v is on a shortest path
between x and u, or u is on a shortest path between x and v.

• A set of nodes V ′
⊆ V is a strongly resolving set for G, denoted by V ′ ▶ G, if and only if every distinct pair of nodes of

G is strongly resolved by some node in V ′.

Then, the problem of computing the strong metric dimension of a graph can be defined as follows:

Problem name: Strong Metric Dimension (Str-Met-Dim)
Instance: an undirected graph G = (V , E).
Valid Solution: a set of nodes V ′

⊆ V such that V ′ ▶ G.
Objective: minimize |V ′

|.
Related notation: sdim(G) = min

V ′⊆V ∧ V ′▶G

{ ⏐⏐ V ′
⏐⏐ }

.

1.1. Standard concepts from the algorithms research community

For the benefit of readers not familiar with analysis of approximation algorithms, we state below some standard
definitions; see standard textbooks such as [8,9,23] for further details. An algorithm for a minimization problem is said
to have an approximation ratio of ρ (or simply called a ρ-approximation) provided the algorithm runs in polynomial time
in the size of the input and produces a solution with an objective value no larger than ρ times the value of the optimum. A
computational problem P is said to be ρ-inapproximable under a complexity-theoretic assumption ofA provided, assuming
A to be true, there exists no ρ-approximation for P . The (standard) Boolean satisfiability problem when every clause
has exactly k literals will be denoted by k- Sat. Finally, for two functions f (n) and g(n) of n, we say f (n) = O∗(g(n)) if
f (n) = O(g(n) nc) for some positive constant c .

1.2. Brief overview of three well-known complexity theoretic assumptions

For the benefit of those readers not well familiar with well-known complexity-theoretic assumptions, we provide a very
brief overview of the three complexity-theoretic assumptions used in this communication.
The P̸=NP assumption Starting with the famous Cook’s theorem [4] in 1971 and Karp’s subsequent paper in 1972 [14], the
P̸=NP assumption is the central assumption in structural complexity theory and algorithmic complexity analysis.
TheUniqueGames Conjecture (Ugc) TheUniqueGames Conjecture, formulated byKhot in [15], is one of themost important
open question in computational complexity theory. Informally speaking, the conjecture states that, assuming P̸=NP, a type
of constraint satisfaction problems does not admit a polynomial time algorithm to distinguish between instances that are
almost satisfiable from instances that are almost completely unsatisfiable. There is a large body of research works showing
that the conjecture has many interesting implications and many researchers routinely assume Ugc to prove non-trivial
inapproximability results. An excellent survey on Ugc can be found in many places, for example in [22].
The Exponential TimeHypothesis (Eth) In an attempt to provide a rigorous evidence that the complexity of k- Sat increases
with increasing k, Impagliazzo and Paturi in [12] formulated the so-called Exponential TimeHypothesis (Eth) in the following
manner. Letting sk = inf

{
δ : there exists O∗

(
2δn

)
algorithm for solving k- Sat

}
, Eth states that sk > 0 for all k ≥ 3, i.e. ,

k- Sat does not admit a sub-exponential time (i.e. , of time O∗
(
2o(n)

)
) algorithm.2 Eth has significant implications for worst-

case time-complexity of exact solutions of search problems, e.g. , see [13,24].

1.3. Our results

Let G = (V , E) be the given graph. It is easy to see following the approach in Khuller et al. [17] that the problem of
computing the strong metric dimension sdim(G) can be reduced to an instance of the (unweighted) set-cover problem
giving aO(log |V |)-approximation. In this communication,we show further improved results as summarized by the following
theorem.

1 The end-points of such a path is called a mutually maximally distant pairs of nodes in [20].
2 For two functions f (x) and g(x) of x, f = o(g) provided limx→∞f (x)/g(x) = 0.
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