Contents lists available at ScienceDirect

Discrete Applied Mathematics

iournal homepage: www.elsevier.com/locate/dam

An improvement on the number of simplices in \mathbb{F}_a^d

Duc Hiep Pham a, Thang Pham b,*, Le Anh Vinha

- ^a University of Education, Vietnam National University, Viet Nam
- ^b Department of Mathematics, EPF Lausanne, Switzerland

ARTICLE INFO

Article history: Received 30 August 2016 Received in revised form 28 November 2016 Accepted 27 December 2016 Available online 19 January 2017

Keywords: Finite fields Simplex Triangle Distinct distance subset Distances

ABSTRACT

Let $\mathcal E$ be a set of points in $\mathbb F_q^d$. Bennett et al. (2016) proved that if $|\mathcal E|\gg q^{d-\frac{d-1}{k+1}}$ then $\mathcal E$ determines a positive proportion of all k-simplices. In this paper, we give an improvement of this result in the case when $\mathcal E$ is the Cartesian product of sets. Namely, we show that if $\mathcal E$ is the Cartesian product of sets and $q^{\frac{kd}{k+1}-1/d}=o(|\mathcal E|)$, the number of congruence classes of k-simplices determined by $\mathcal E$ is at least $(1-o(1))q^{\binom{k+1}{2}}$, and in some cases our result is

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let \mathbb{F}_q be a finite field of order q with $q=p^r$ for some prime p and positive integer r. Denote by $O(d,\mathbb{F}_q)$ the orthogonal group in \mathbb{F}_q^d . We say that two k-simplices in \mathbb{F}_q^d with vertices $(\mathbf{x}_1,\ldots,\mathbf{x}_{k+1}),(\mathbf{y}_1,\ldots,\mathbf{y}_{k+1})$ are in the same congruence class if there exist $\theta\in O(d,\mathbb{F}_q)$ and $\mathbf{z}\in\mathbb{F}_q^d$ so that $\mathbf{z}+\theta(\mathbf{x}_i)=\mathbf{y}_i$ for all $i=1,2,\ldots,k+1$.

Hart and losevich [7] made the first investigation on counting the number of congruence classes of simplices determined by a point set in \mathbb{F}_q^d . More precisely, they proved that if $|\mathcal{E}|\gg q^{\frac{kd}{k+1}+\frac{k}{2}}$ with $d\geq {k+1\choose 2}$, then \mathcal{E} contains a copy of all k-simplices with non-zero edges. Here and throughout, $X\ll Y$ means that there exists C>0 such that $X\leq CY$, and X=o(Y) means that $X/Y \to 0$ as $q \to \infty$, where X, Y are viewed as functions in q.

Using methods from spectral graph theory, the third listed author [11] improved this result. In particular, he showed that the same result also holds when $d \ge 2k$ and $|\mathcal{E}| \gg q^{(d-1)/2+k}$. It follows from the results in [7,11] that the most difficulties arise when the size of simplex is large with respect to the dimension of the space, for instance, the result in [11] on the number of congruence classes of triangles is only non-trivial if $d \ge 4$.

In [5], Covert et al. addressed the case of triangles in \mathbb{F}_q^2 , and they established that if $|\mathcal{E}| \gg \rho q^2$, then \mathcal{E} determines at least $c\rho q^3$ congruence classes of triangles. The author of [12] extended this result to the case $d \geq 3$. Formally, he proved that if $|\mathcal{E}| \gg q^{\frac{d+2}{2}}$, then \mathcal{E} determines a positive proportion of all triangles. Using Fourier analytic techniques, Chapman et al. [4] indicated that the threshold $q^{\frac{d+2}{2}}$ on the cardinality of \mathcal{E} in the triangle case can be replaced by $q^{\frac{d+k}{2}}$ for the case of k-simplices. In a recent result, Bennett et al. [2] improved the threshold $q^{\frac{d+k}{2}}$ to $q^{d-\frac{d-1}{k+1}}$. The precise statement is given by the following theorem.

E-mail addresses: phamduchiepk6@gmail.com (D.H. Pham), thang.pham@epfl.ch (T. Pham), vinhla@vnu.edu.vn (L.A. Vinh).

^{*} Corresponding author.

Theorem 1.1 (Bennett et al., [2]). Let \mathcal{E} be a subset in \mathbb{F}_a^d . Suppose that

$$|\mathcal{E}| \gg q^{d-\frac{d-1}{k+1}}$$

then, for $1 \le k \le d$, the number of congruence classes of k-simplices determined by \mathcal{E} is at least $cq^{\binom{k+1}{2}}$ for some positive constant c.

Note that one of the most important steps in their proof in [2] is to reduce the problem of counting congruence classes of k-simplices to the number of quadruples (\mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{d}) $\in \mathcal{E}^4$ with $\|\mathbf{a} - \mathbf{b}\| = \|\mathbf{c} - \mathbf{d}\|$ by applying Lemma 2.3 and elementary results from group action theory in an ingenious way. It has been shown in [2] that the number of such quadruples in \mathcal{E}^4 is at most $|\mathcal{E}|^4/q + q^d|\mathcal{E}|^2$. We remark here that the error term $q^d|\mathcal{E}|^2$ plays an important role in their arguments when \mathcal{E} is large enough. We refer the reader to Section 5 for a detailed explanation and a discussion on a connection between Fourier analytic techniques and methods from spectral graph theory.

In this paper, by employing spectral graph theory techniques, we are able to get a better estimate on the number of quadruples $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \in \mathcal{E}^4$ with $\|\mathbf{a} - \mathbf{b}\| = \|\mathbf{c} - \mathbf{d}\|$ in the case \mathcal{E} is a Cartesian product of sets. This allows us to obtain the following improvement of Theorem 1.1.

Theorem 1.2. Let $\mathcal{E} = \mathcal{A}_1 \times \cdots \times \mathcal{A}_d$ be a subset in \mathbb{F}_q^d . Suppose that

$$(\min_{1\leq i\leq d}|\mathcal{A}_i|)^{-1}|\mathcal{E}|^{k+1}\gg q^{kd},$$

then for $1 \le k \le d$, the number of congruence classes of k-simplices determined by \mathcal{E} is at least $cq^{\binom{k+1}{2}}$ for some positive constant c.

Corollary 1.3. Let $\mathcal{E} = \mathcal{A}^d$ be a subset in \mathbb{F}_q^d . If $|\mathcal{E}| \gg q^{\frac{kd}{k+1-1/d}}$ then the number of congruence classes of k-simplices determined by \mathcal{E} is at least $cq^{\binom{k+1}{2}}$ for some positive constant c.

As a consequence of Corollary 1.3, we recover the following result in [8].

Theorem 1.4. Let A be a subset in \mathbb{F}_q . If $|A| \gg q^{\frac{d}{2d-1}}$, then the number of distinct distances determined by points in $A^d \subseteq \mathbb{F}_q^d$ is at least $\gg q$.

On the number of congruence classes of triangles in \mathbb{F}_a^2 .

For the case of triangles in \mathbb{F}_q^2 , in 2012 Bennett, Iosevich, and Pakianathan [3], using Elekes–Sharir paradigm and an estimate on the number of incidences between points and lines in \mathbb{F}_q^3 , improved significantly the result in [5]. In particular, they proved that if $|\mathcal{E}| \gg q^{7/4}$ and $q \equiv 3 \mod 4$, then the number of triangles determined by \mathcal{E} is at least cq^3 for some positive constant c. The authors of [2] recently improved the exponent 7/4 to 8/5 in the following.

Theorem 1.5 (Bennett et al. [2]). Let \mathcal{E} be a set of points in \mathbb{F}_q^2 . If $|\mathcal{E}| \gg q^{8/5}$, then \mathcal{E} determines a positive proportion of all triangles.

We will give a graph-theoretic proof for this theorem in Section 4. If \mathcal{E} has Cartesian product structure of sets with different sizes, as a consequence of Theorem 1.2, we are able to obtain a much stronger result as follows.

Theorem 1.6. Let \mathcal{A} , \mathcal{B} be subsets in \mathbb{F}_q . If $|\mathcal{A}| \geq q^{\frac{1}{2} + \epsilon}$ and $|\mathcal{B}| \geq q^{1 - \frac{2\epsilon}{3}}$ for some $\epsilon \geq 0$, then the number of congruence classes of triangles determined by $\mathcal{A} \times \mathcal{B} \subseteq \mathbb{F}_q^2$ is at least cq^3 for some positive constant c.

Note that if \mathcal{A} and \mathcal{B} are arbitrary sets in \mathbb{F}_q , then it follows from Theorem 1.2 that in order to prove that there exist at least cq^3 congruence classes of triangles, we need the condition $|\mathcal{A}|^2|\mathcal{B}|^3\gg q^4$. In particular, if $|\mathcal{A}|< q^{1/2}$ then we must have $|\mathcal{B}|>q$. In fact, one cannot expect to get a positive proportion of congruence of triangles in the set $\mathcal{A}\times\mathcal{B}$ with arbitrary sets \mathcal{A} and \mathcal{B} satisfying $|\mathcal{A}|=o(q^{1/2})$ and $|\mathcal{B}|< q$, since the authors of [2] gave a construction with $|\mathcal{A}|=q^{1/2-\epsilon'}$ and $|\mathcal{B}|=q$, and the number of congruence classes triangles determined by \mathcal{E} is at most $cq^{3-\epsilon''}$ for $\epsilon''>0$. For the sake of completeness, we reproduce their construction here:

A construction for the triangle case.

Let $\epsilon \in (0, 1/2)$ and τ be a non-null vector. We use the orthogonal decomposition $\tau^{\perp} \oplus \langle \tau \rangle$ to identify $\mathbb{F}_q^2 = \mathbb{F}_q \oplus \mathbb{F}_q$. Suppose that $q = p^r$ for some prime p, so \mathbb{F}_q can be viewed as a r-dimensional space over \mathbb{F}_p . Thus for any $y \in \mathbb{F}_q$, we can write y as $(y(1), \ldots, y(r)) \in \mathbb{F}_p^r$ where y(i) are the \mathbb{F}_p coordinates of $y \in \mathbb{F}_q$ with respect to a \mathbb{F}_p -basis.

Download English Version:

https://daneshyari.com/en/article/4949698

Download Persian Version:

https://daneshyari.com/article/4949698

<u>Daneshyari.com</u>