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a b s t r a c t

Let G be a graph and u, v be any two distinct vertices of G. A vertex w of G resolves u
and v if the distance between u and w does not equal the distance between v and w. A
set W of vertices of G is a resolving set for G if every pair of vertices of G is resolved by
some vertex ofW . The minimum cardinality of a resolving set for G is themetric dimension,
denoted by dim(G). If G is a connected graph, then a vertex w strongly resolves two vertices
u and v if there is a shortest u–w path containing v or a shortest v–w path containing u. A
set S of vertices is a strong resolving set for G if every pair of vertices is strongly resolved
by some vertex of S and the minimum cardinality of a strong resolving set is called the
strong dimension of G and is denoted by sdim(G). Both the problem of finding the metric
dimension and the problem of finding the strong dimension of a graph are known to be
NP-hard. It is known that the strong dimension can be polynomially transformed to the
vertex covering problem for which good approximation algorithms are known. The metric
dimension is a lower bound for the strong dimension. In this paper we compare the metric
and strong dimensions of graphs. We describe all trees for which these invariants are the
same and determine the class of trees for which the difference between these invariants is
a maximum. We observe that there is no linear upper bound for the strong dimension of
trees in terms of themetric dimension. For cographswe show that sdim(G) ≤ 3 dim(G) and
that this bound is asymptotically sharp. It is known that the problem of finding the metric
dimension of split graphs is NP-hard.We show that the strong dimension of connected split
graphs can be found in polynomial time.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph and x, y any two vertices of G. Then the distance between x and y, denoted by d(x, y), is the length of a
shortest x–y path in G if such a path exists and it is defined to be ∞ otherwise. A vertex w of G resolves two distinct vertices
u and v if d(u, w) ̸= d(v, w). A set W of vertices of G is a resolving set for G if every pair of vertices of G is resolved by
some vertex of W . A smallest resolving set for G is called a metric basis and its cardinality the metric dimension, denoted by
dim(G). Slater [20] andHarary andMelter [11] independently introduced themetric dimension of a graph. Slater referred to a
resolving set as a locating set and the smallest cardinality of a locating set as the location number of a graph. Hemotivated the
study of locating sets by their application to uniquely determining the location of an intruder in a network. Since then many
other applications of resolving sets and the metric dimension have been discussed in the literature, see [3] for an extensive
summary of such applications. NP-hardness for the problem of finding the metric dimension was established in [14].

Let W = {w1, w2, . . . , wk} be an (ordered) set of vertices in a graph G and let v be any vertex of G. Then the vector
d(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)) is called the distance vector of v with respect to W . Thus W is a resolving set if

* Corresponding author.
E-mail addresses: gaiamoravcik@gmail.com (G. Moravcik), o.oellermann@uwinnipeg.ca (O.R. Oellermann), syusim@uwaterloo.ca (S. Yusim).

http://dx.doi.org/10.1016/j.dam.2016.12.020
0166-218X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2016.12.020
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:gaiamoravcik@gmail.com
mailto:o.oellermann@uwinnipeg.ca
mailto:syusim@uwaterloo.ca
http://dx.doi.org/10.1016/j.dam.2016.12.020


Please cite this article in press as: G. Moravcik, et al., Comparing the metric and strong dimensions of graphs, Discrete Applied Mathematics (2017),
http://dx.doi.org/10.1016/j.dam.2016.12.020.

2 G. Moravcik et al. / Discrete Applied Mathematics ( ) –

and only if the distance vectors with respect toW of any two distinct vertices are different. Sebő and Tannier [19] observed
that a metric basis and the corresponding distance vectors are not sufficient to uniquely describe the graph. This motivated
them to introduce a ‘stronger’ version of the metric dimension of a graph. If G is a connected graph, then a vertex w strongly
resolves two vertices u and v if there is a shortest u-w path containing v or a shortest v-w path containing u. A set S of
vertices is a strong resolving set for G if every pair of vertices is strongly resolved by some vertex of S and a smallest strong
resolving set is called a strong basis and its cardinality the strong dimension of G, denoted by sdim(G). It is pointed out in [19]
that a strong basis and the corresponding distance vectors uniquely determine the graph. For a more detailed discussion
of this unique determination see [13]. NP-hardness for the problem of finding the strong dimension of a connected graph
was established in [17]. In the same paper it was shown that the problem of finding the strong dimension of a graph can be
polynomially transformed to the vertex covering problem. To this end, a vertex v of a connected graph is said to bemaximally
distant from a vertex u, denoted by v MD u, if for all x ∈ N(v), d(x, u) ≤ d(v, u), i.e., the neighbours of v are no further from u
than v is from u. If v MD u and uMD v, then u and v are said to bemutually maximally distant and this is denoted by uMMD v.
The strong resolving graph of a connected graph G, denoted by GSR, has as its vertex set the vertices of G and two vertices u
and v are adjacent in GSR if and only if uMMD v. A set S of vertices of a graph G is a vertex cover of the graph if every edge
of G is incident with a vertex of S. The cardinality of a smallest vertex cover of G is called the vertex covering number and is
denoted by α(G). The following result was established in [17].

Theorem 1.1 ([17]). Let G be a connected graph. Then a set S of vertices of G is a strong basis for G if and only if S is a minimum
vertex cover of GSR.

Hence α(GSR) = sdim(G). Note that the problem of finding a minimum vertex cover for GSR is equivalent to finding a
minimum vertex cover for the graph obtained by deleting all isolated vertices from GSR. (Since the isolated vertices of the
strong resolving graph do not play a role when finding the minimum vertex cover, these were omitted when discussing the
strong resolving graph in [18].) It is known, see [9], that a factor-2 approximation for the vertex covering number can be
found in a greedy manner by repeatedly taking both endpoints of an edge into the vertex cover, and then removing these
vertices from the remaining graph until no edges remain.

The metric dimension is a lower bound for the strong dimension. In this paper we compare the metric and strong
dimensions of several classes of graphs for which the metric dimension can be found in polynomial time. More specifically,
we describe all trees for which these invariants are equal and characterize those trees for which the difference between
these two invariants is a maximum. We show that there is no linear upper bound for the strong dimension of trees in terms
of the metric dimension. For a connected cograph G (i.e., a graph without an induced P4) we determine a lower bound on the
metric dimension in terms of its order and establish the asymptotically sharp bound sdim(G) ≤ 3 dim(G). It is known that
the problem of finding the metric dimension of split graphs (i.e. graphs whose vertex set can be partitioned into a clique and
an independent set) is NP-hard [8]. On the other hand we show that the strong dimension of connected split graphs can be
found efficiently, thereby giving an upper bound for the metric dimension of these graphs.

For basic graph theory terminology not introduced herewe follow [5].Weuse n to denote the order of a graph. For vertices
u and v of a graph G, u ∼ v (or u ∼G v) means that a vertex u is adjacent with a vertex v and u ≁ v (or u ≁G v) means that u
and v are non-adjacent. Let G be a graph and S1 and S2 sets of vertices of G. If every vertex of S1 is MMD from every vertex of
S2 wewrite S1 MMD S2. Moreover, if no vertex of S1 is MMDwith any vertex of S2 we denote this by S1¬MMD S2. If either S1
or S2, say S1, consists of a single vertex w, then we replace S1 by w. If we need to specify the graph G in which two vertices
are or are not MMD we use MMDG or ¬MMDG, respectively. For a graph G, we let η(G) = sdim(G) − dim(G).

2. Trees

In this section we will be comparing the metric and strong dimension for trees. Efficient processes for finding the metric
dimension of trees have been described independently in several papers—see, for example, [4,11,14,20]. Suppose T is a tree.
We begin by introducing some terminology introduced in [4] that is useful when describing an algorithm for finding the
metric dimension for trees. A vertex of degree at least 3 in a graph G is called a major vertex of G. A major vertex v is called
an exterior major vertex of T if T–v contains at least one component that is a path. We denote the number of exterior major
vertices of T by ex(T ).

Let σ (T ) be the number of leaves in T . In his seminal paper on the metric dimension of a graph, Slater [20] established
the following formula for the metric dimension of trees:

Theorem 2.1 ([20]).

(i) If T is a tree that is not a path, then

dim(T ) = σ (T ) − ex(T ).

(ii) The metric dimension of a non-trivial path is 1.

Sebö and Tannier [19] observed that the strong dimension for trees has the following simple formula.
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