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a b s t r a c t

We consider a system in which a group of agents represented by the vertices of a graph
synchronously update their opinion based on that of their neighbours. If each agent adopts
a positive opinion if and only if that opinion is sufficiently popular among his neighbours,
the system will eventually settle into a fixed state or alternate between two states. If one
agent acts in a different way, other periodsmay arise.We show that only a small number of
periodsmay arise if natural restrictions are placed either on the neighbourhood structure or
on the way in which the nonconforming agentmay act; without either of these restrictions
any period is possible.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider a general setting in which a number of agents with a system of neighbourhood relationships have binary
opinions which they update synchronously based on their neighbours’ opinions. Neighbourhood is an arbitrary symmetric
relation, and we represent the agents as vertices of a graph with edges, and, if necessary, loops, corresponding to the neigh-
bourhood relation. Perhaps themost natural model for such updating of opinion is for each agent to adopt themore popular
opinion among its neighbours (majority dynamics). A more general model along the same lines is to allow each agent to be
inclined against a particular opinion, only adopting that opinion if sufficiently many neighbours (not just a simple major-
ity) do. Different agents can be inclined towards different opinions or to different degrees. Such a system forms a threshold
network; threshold networks were introduced by McCulloch and Pitts [9] to model activation of neurons. They also arise
naturally as myopic best response strategies in networks of agents playing a coordination game (see e.g. [2,14]).

Majority dynamics and the more general threshold networks have been much studied. A classical result is the period-2
property. Since any finite threshold network has only a finite number of states and the progression from state to state is
deterministic and memoryless, periodic behaviour must eventually arise from any possible starting state. What lengths of
period are possible? It is not obvious that there is any constant bound on the period, but in fact the only possible periods are
1 and 2. This was proved independently by Goles and Olivos [6] (see also [5]) and Poljak and Sûra [12]. Poljak and Turzík [13]
gave good bounds on the time until periodic behaviour begins.

If the network is infinite then the system does not necessarily reach a periodic state. Furthermore, even if it does, any
period can occur. Moran [10] showed that with the additional conditions of bounded neighbourhoods and subexponential
growth, both of which are necessary, again only periods 1 and 2 are possible. Ginosar and Holzman [4] show that under
suitable conditions on an infinite graph a local period-2 property holds, in that each agent will eventually have a constant
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or alternating opinion (though the system as a whole may never become periodic since the times at which agents settle into
these patterns could be unbounded).

If the updates are asynchronous, it is easy to see that on any finite threshold network the state is ultimately constant.
Tamuz and Tessler [16] showed that this again holds locally on an infinite graph under suitable conditions. This contrasts
with the closely related zero-temperature stochastic Isingmodel, which updates as asynchronousmajority dynamics except
that ties are broken randomly; Nanda, Newman and Stein [11] showed that under the lattermodel onZ2, almost surely every
vertex changes its opinion infinitely often.

Other facets ofmajority dynamics have been studied, such as the question ofwhether a bias in the initial opinions tends to
be preserved by this process (Tamuz and Tessler, [16]), and the threshold of initial bias which results in consensus on infinite
trees (Kanoria and Montanari, [8]). Probabilistic versions of majority dynamics have been studied on highly-structured
graphs. Amodel where agents make synchronous updates to themajority opinion among their neighbours, but occasionally
make errors, dates back at least to work by Gray from the 1980s [7], but a similar model was considered significantly earlier
by Spitzer [15]. Most studies on this model are merely computer simulations, but the few rigorous results include Gray’s
proof that the 1-dimensional version does not have a phase transition [7] and, more recently, the result of Balister, Bollobás,
Johnson and Walters [1] that if the probability of error is small then the 2-dimensional torus spends almost all its time in a
consensus state.

The opposite notion to majority dynamics, where each agent adopts the minority opinion of its neighbourhood, also
arises naturally from the myopic best response strategy for a congestion game [14]. We may similarly generalise this to
an anti-threshold network, where each agent adopts an opinion if it is sufficiently unpopular in the neighbourhood. The
period-2 property for finite anti-threshold networks follows immediately from the result on threshold networks.

Cannings [3] considered various situations on simple graphs in which there were both majority and minority agents
present, showing that cycles of various lengths could occur. He analysed particularly the case of a complete graph, proving
that only cycles of length 1, 2 and 4 are possible, with length 4 only occurring in the special case of having equal numbers of
majority andminority agents. A further class of cubic graphs was considered and possible cycle lengths for various numbers
ofminority agents obtained by direct simulation. A striking feature of these data is thatwhen only one agentmakesminority
updates while the others make majority updates, only periods 1, 2 and 4 appear. However, this is not true for all graphs (or
even all cubic graphs, e.g. Fig. 1(b)).

A consequence of the way the cubic graphs considered in [3] are constructed is that they will have no triangles. We show
that it is true for all triangle-free simple graphs that only periods 1, 2 and 4 arise for majority dynamics with one additional
agent following a different protocol. This result applies in the much more general setting where the nonconforming agent
updates his opinion as any function of its neighbours’ opinions, not necessarily choosing the minority opinion, and also if
triangles are permitted so long as the nonconformist is not part of any triangle. If loops are permitted then there are more
possibilities, but we prove that only a few different periods can arise. We also show that if the nonconforming agent does
update to the minority opinion of his neighbours, then again only a few different periods can arise, with no restriction on
triangles.

We will prove all our results for the general threshold situation, but they could equivalently be re-stated in terms of
majority updates. It is easy to see that an agent updating according to an arbitrary threshold may be simulated by a suit-
able bundle of majority agents, and so any dynamics arising from arbitrary threshold networks with one nonconformist can
also arise from majority dynamics with one nonconformist on a larger graph. This larger graph can also easily be chosen in
accordance with the various restrictions on graphs that we consider.

Formally, we fix a finite graph G, which may have loops but not multiple edges, on vertex set {v1, . . . , vn}. For each i,
write Ni for the neighbourhood of vi (including vi if there is a loop there). The graph is initialised by giving each vertex one
of two opinions, which we represent as {+1, −1}, at time 0, and all vertices simultaneously update their opinions at each
time step. Write Ut for the set of vertices having opinion +1 at time t . Each vertex vi has an update rule which depends only
on the state of Ni at the previous time step, i.e. for each i there is a set system Si ⊆ PNi such that vi ∈ Ut+1 if and only if
Ni ∩ Ut ∈ Si. We say that vi has a threshold rulewith threshold ri if Si = {A ⊆ Ni : |A| > ri} for some ri, and an anti-threshold
rule if Si = {A ⊆ Ni : |A| < ri}. We will always assume that every vertex except v1 has a threshold rule, with vi having
threshold ri for i > 1. Write U∗

t for Ut \ {v1}.

2. A Lyapunov operator

Proofs of the period-2 property for threshold networks (see [6,12,5,2]) proceed by defining a suitable Lyapunov operator,
proving that it is bounded, integer-valued and non-decreasing, so must be ultimately constant, and showing that if at any
step the value does not change then the state is identical to the previous state but one. In this section we give a modified
Lyapunov operator for the situationwhere v1 has an arbitrary rule, and show that provided every other vertex has a threshold
rule this is still bounded and non-decreasing, andmust be an integermultiple of 1/2, so is ultimately constant. The analysis of
what can happen once this operator has reached its final value is muchmore complicated than for pure threshold networks,
and we carry out this analysis separately for triangle-free graphs in Section 3 and for general graphs with v1 having an
anti-threshold rule in Section 4.

Theorem 1. For t sufficiently large, if vi ∈ U∗

t−1 △ U∗

t+1 then vi ∈ N1 and |Ni ∩ U∗
t | = ri − 1.
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