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a b s t r a c t

A long-standing conjecture mentions that a k-connected graph G admits k independent
spanning trees (ISTs for short) rooted at an arbitrary node of G. An n-dimensional twisted
cube, denoted by TQn, is a variation of hypercubewith connectivity n and hasmany features
superior to those of hypercube. Yang (2010) first proposed an algorithm to construct n
edge-disjoint spanning trees in TQn for any odd integer n > 3 and showed that half of them
are ISTs. At a later stage,Wang et al. (2012) inferred that the above conjecture in affirmative
for TQn by providing an O(N logN) time algorithm to construct n ISTs, where N = 2n is
the number of nodes in TQn. However, this algorithm is executed in a recursive fashion
and thus is hard to be parallelized. In this paper, we revisit the problem of constructing
ISTs in twisted cubes and present a non-recursive algorithm. Our approach can be fully
parallelized to make the use of all nodes of TQn as processors for computation in such a
way that each node can determine its parent in all spanning trees directly by referring its
address and tree indices in O(logN) time.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let V (G) and E(G) denote the node set and edge set of a graph G, respectively. A set of spanning trees in G is called
independent spanning trees (ISTs for short) if all the trees are rooted at the same node r such that, for any other node
v ∈ V (G)\{r}, the paths from v to r in any two trees are internally node-disjoint (i.e., there exists no commonnode in the two
paths except v and r). Constructing multiple spanning trees in a graph has been studied not only from a theoretical point of
view but also from some practical applications. In particular, the construction of ISTs is important due to the applications to
fault-tolerant broadcasting and securemessage distribution in reliable interconnection networks [2,13,18,22]. Suppose that
we have k ISTs rooted at a node r in a network. For the former, the fault-tolerant broadcasting can be achieved by sending k
copies of a message along k ISTs on the network provided that there are at most k− 1 faulty nodes (different from r) and/or
faulty edges in the network. For the latter, if a message at the source node is separated into k different parts, by sending the
k parts along k ISTs on the network, then the message is secure in the message distributing.
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Let G − F stand for the graph obtained from G by removing a subset F ⊂ V (G). A graph G is k-connected if |V (G)| > k
and G − F is connected for any subset F ⊂ V (G) with |F | < k. Zehavi and Itai [29] proposed the following conjecture: if G
is a k-connected graph, then it admits k ISTs rooted at an arbitrary node. Till now, the conjecture has been affirmed only for
k 6 4 (see [13,6,29,7] for k = 2, 3, 4, respectively) and is still open for k > 5. Also, research of this topic for applications has
been focused on some interconnection networks (see [4,5,12,18,19,22–24,26,28,27] and quotes therein).

Hilbers et al. [11] first introduced the family of twisted cubes as a variation of hypercubes in order to achieving
some improvements of structure properties in contrast to hypercubes. Let TQn denote the n-dimensional twisted cube.
Chang et al. [3] showed that TQn is an n-connected graphwith the diameter, wide diameter, and faulty diameter being about
half of those in comparable hypercube. Although Abraham and Padmanabhan [1] pointed out the asymmetry of twisted
cubes, this does not diminish an upsurge of research on twisted cubes. A lot of research results on TQn can be found in
the literature [8–10,16,14,15,17,19,21,25,20]. In particular, Yang [21] proposed an algorithm to construct n edge-disjoint
spanning trees in TQn for any odd integer n > 3 and showed that half of them are ISTs. Wang et al. [19] further proposed
an algorithm for constructing n ISTs with an arbitrary node as the root in O(N logN) time, where N = 2n is the number of
nodes in TQn. However, this algorithm is executed in a recursive fashion and thus is hard to be parallelized.

In this paper, we revisit the problem of constructing ISTs in twisted cubes. An algorithmdeveloped for an interconnection
network is said to be fully parallelized if it could make the use of all nodes of such a network as processors for computation.
An obvious advantage of a fully parallelized algorithm is that it can lead to a better utilization of computing resources.
Accordingly, we present a non-recursive and fully parallelized algorithm for constructing n ISTs rooted at an arbitrary node
in TQn. A crucial practice of our algorithm is to find the parent of every node in each spanning tree directly, and consequently
the algorithm can be parallelized to run inO(logN) time usingN = 2n nodes of TQn as processors. Note that the computation
of each node only relies on the information of its address and tree indices. The algorithm is efficient because there are n ISTs
to be constructed and each IST contains 2n nodes.

The rest of this paper is organized as follows. Section 2 formally gives the definition of twisted cubes and some useful
terminologies and notations. Section 3 presents our algorithm for constructing n ISTs in TQn and provides examples as
illustration. Section 4 proves the correctness of the algorithm and analyzes its complexity. The final section contains our
concluding remarks.

2. Preliminary

Let Zn = {0, 1, . . . , n − 1}. For a binary string x = xn−1xn−2 · · · x0 and an integer i ∈ Zn, we define
...
⊕(x, i) =

xi ⊕ xi−1 ⊕ · · · ⊕ x0, where ⊕ is the bit exclusive-OR operation. The n-dimensional twisted cube, denoted by TQn, is a
variant of the n-dimensional hypercube with 2n nodes, where each node is labeled by a unique binary string of length n as
its address. TQn can be recursively defined as follows.

Definition 1 ([11]). The 1-dimensional twisted cube TQ1 is the complete graph with two nodes labeled by 0 and 1. For an
odd integer n > 3, TQn consists of four subcubes TQ 00

n−2, TQ
01
n−2, TQ

10
n−2, and TQ 11

n−2, where TQ ab
n−2 for a, b ∈ Z2 is isomorphic to

TQn−2 such that V (TQ ab
n−2) = {abx : x ∈ V (TQn−2)} (i.e., adding two preceding bits a and b in the front of a node labeled by x)

and E(TQ ab
n−2) = {(abx, aby) : (x, y) ∈ E(TQn−2)}. That is, V (TQn) = ∪ab∈Z2 V (TQ ab

n−2). Define E(TQn) = ∪ab∈Z2 E(TQ ab
n−2)∪E ′,

where an edge (u, v) ∈ E ′ if and only if the two nodes u = un−1un−2 · · · u0 and v = vn−1vn−2 · · · v0 satisfy one of the
following conditions:

(1) u = v̄n−1vn−2 · · · v0;
(2) u = v̄n−1v̄n−2vn−3 · · · v0 for

...
⊕(u, n − 3) = 0;

(3) u = vn−1v̄n−2vn−3 · · · v0 for
...
⊕(u, n − 3) = 1.

Note that Definition 1 can only be applied for odd integer n. Fig. 1 depicts twisted cubes TQ3 and TQ5, respectively.
Recently, Wang et al. [19] showed that Definition 1 can be further extended to any integer n > 1 by considering two types
of TQn for even integer n as follows:

Definition 2 ([19]). For an even integer n > 2, the n-dimensional twisted cube TQn is divided into two types: 0-type TQn and
1-type TQn, where the former is denoted by TQ 0

n and the latter is denoted by TQ 1
n . For b ∈ Z2, V (TQ b

n ) = {ibx : i ∈ Z2 and x ∈

V (TQn−1)} and E(TQ b
n ) = ∪i∈Z2{(ibx, iby) : (x, y) ∈ E(TQn−1)} ∪ E ′, where an edge (u, v) ∈ E ′ if and only if the two nodes

u = unbun−2 · · · u0 and v = vnbvn−2 · · · v0 satisfy u = v̄nbvn−2 · · · v0.

Fig. 2 illustrates the two types of twisted cubes TQ 0
4 and TQ 1

4 , respectively. In the rest of this paper, we say TQn to mean
either 0-type TQn or 1-type TQn if n is even and there is no ambiguity. Also, for notational convenience, a node x ∈ V (TQn) is
denoted by x = (xn)xn−1xn−2 · · · x0, where the first bit xn enclosed by a pair of round brackets indicates that we can omit it if
n is odd. According to Definitions 1 and 2, twisted cubes can be equivalently defined by the following non-recursive fashion.

Theorem 1. Let n > 1 and v ∈ V (TQn). For i ∈ Zn, the ith dimensional adjacent node (or the i-neighbor) of v in TQn, denoted
by Ni(v) is computed as follows:
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