Complexity of rainbow vertex connectivity problems for restricted graph classes*

Juho Lauri
Tampere University of Technology, Finland

A R TICLE INFO

Article history:
Received 16 June 2016
Received in revised form 26 October 2016
Accepted 2 November 2016
Available online xxxx

Keywords:

Rainbow connectivity
Computational complexity

Abstract

A path in a vertex-colored graph G is vertex rainbow if all of its internal vertices have a distinct color. The graph G is said to be rainbow vertex connected if there is a vertex rainbow path between every pair of its vertices. Similarly, the graph G is strongly rainbow vertex connected if there is a shortest path which is vertex rainbow between every pair of its vertices. We consider the complexity of deciding if a given vertex-colored graph is rainbow or strongly rainbow vertex connected. We call these problems Rainbow Vertex Connectivity and Strong Rainbow Vertex Connectivity, respectively. We prove both problems remain NP-complete on very restricted graph classes including bipartite planar graphs of maximum degree 3 , interval graphs, and k-regular graphs for $k \geq 3$. We settle precisely the complexity of both problems from the viewpoint of two width parameters: pathwidth and tree-depth. More precisely, we show both problems remain NP-complete for bounded pathwidth graphs, while being fixed-parameter tractable parameterized by tree-depth. Moreover, we show both problems are solvable in polynomial time for block graphs, while Strong Rainbow Vertex Connectivity is tractable for cactus graphs and split graphs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Krivelevich and Yuster [19] introduced the concept of rainbow vertex connectivity. A path in a vertex-colored graph G is said to be vertex rainbow if all of its internal vertices have a distinct color. The graph G is said to be rainbow vertex connected if there is a vertex rainbow path between every pair of its vertices. The minimum number of colors needed to make G rainbow vertex connected is known as the rainbow vertex connection number, and it is denoted by rvc (G). Recall the diameter of a graph G, denoted by $\operatorname{diam}(G)$, is the length of a longest shortest path in G. It is easy to see two vertices u and v are rainbow vertex connected regardless of the underlying vertex-coloring if their distance $d(u, v)$ is at most 2 . Thus, we have that $\operatorname{rvc}(G) \geq \operatorname{diam}(G)-1$, with equality if the diameter is 1 or 2 . Similarly, an easy to see upper bound is $\operatorname{rvc}(G) \leq n-2$, as long as we disregard the singleton graph. In other words, complete graphs are precisely the graphs with rainbow vertex connection number 0 ; for all other graphs we require at least 1 color.

Li et al. [21] introduced the strong variant of rainbow vertex connectivity. We say the vertex-colored graph G is strongly rainbow vertex connected if there is, between every pair of vertices, a shortest path whose internal vertices have a distinct color. The minimum number of colors needed to make G strongly rainbow vertex connected is known as the strong rainbow vertex connection number, and it is denoted by $\operatorname{srvc}(G)$. As each strong vertex rainbow coloring is also a rainbow vertex coloring, we have that $\operatorname{diam}(G)-1 \leq \operatorname{rvc}(G) \leq \operatorname{srvc}(G) \leq n-2$.

[^0]Prior to the work of Krivelevich and Yuster [19], the concept of rainbow connectivity (for edge-colored graphs) was introduced by Chartrand et al. [4] as an interesting way to strengthen the connectivity property. Indeed, the notion has proven to be useful in the domain of networking [3] and anonymous communication [10]. Rainbow coloring and connectivity problems have been subject to considerable interest and research during the past years. For additional applications, we refer the reader to the survey [22]. A comprehensive introduction is also provided by the books [23,5].

It is computationally difficult to determine either $\operatorname{rvc}(G)$ or $\operatorname{srvc}(G)$ for a given graph G. Indeed, through the work of Chen et al. [7,6] it is known that deciding if $\operatorname{rvc}(G) \leq k$ is NP-complete for every $k \geq 2$. Likewise, Eiben et al. [13] showed deciding if $\operatorname{srvc}(G) \leq k$ is NP-complete for every $k \geq 3$. In the same paper, the authors also proved that the strong rainbow vertex connection number of an n-vertex graph of bounded diameter cannot be approximated within a factor of $n^{1 / 2-\epsilon}$, for any $\epsilon>0$, unless $P=$ NP. Given such strong intractability results, it is interesting to ask whether the following problem is easier.

Rainbow Vertex Connectivity (Rvc)

Instance: A connected undirected graph $G=(V, E)$, and a vertex-coloring $\psi: V \rightarrow C$, where C is a set of colors Question: Is G rainbow vertex connected under ψ ?

However, Rainbow Vertex Connectivity was shown to be NP-complete by Chen et al. [7]. Later on, Huang et al. [16] showed the problem remains NP-complete even when the input graph is a line graph. A more systematic study into the complexity of Rainbow Vertex Connectivity was performed by Uchizawa et al. [30]. They proved the problem remains NP-complete for both series-parallel graphs, and graphs of bounded diameter. In contrast, they showed the problem is in P for outerplanar graphs. Furthermore, they showed the problem is fixed-parameter tractable for the n-vertex m-edge general graph parameterized by the number of colors in the vertex-coloring. That is, they gave an algorithm running in time $O\left(k 2^{k} m n\right)$ such that given a graph vertex-colored with k colors, it decides whether G is rainbow vertex connected.

We mention two related problems, defined on edge-colored undirected graphs. A path in an edge-colored graph H is rainbow if no two edges of it are colored the same. The graph H is said to be rainbow connected if there is a rainbow path between every pair of its vertices. Likewise, the graph H is said to be strongly rainbow connected if there is a shortest path which is rainbow between every pair of its vertices. Formally, the two problems are defined as follows.

Rainbow Connectivity (Rc)
Instance: A connected undirected graph $H=(V, E)$, and an edge-coloring $\zeta: E \rightarrow C$, where C is a set of colors
Question: Is H rainbow connected under ζ ?

Strong Rainbow Connectivity (Src)
Instance: A connected undirected graph $H=(V, E)$, and an edge-coloring $\zeta: E \rightarrow C$, where C is a set of colors
Question: Is H strongly rainbow connected under ζ ?

It was shown by Chakraborty et al. [3] that Rainbow Connectivity is NP-complete. Later on, the complexity of both edge variants was studied by Uchizawa et al. [30]. For instance, the authors showed both problems remain NP-complete for outerplanar graphs, and that Rainbow ConNECTivity is NP-complete already on graphs of diameter 2. A further study into the complexity of the edge variant problems was done in our earlier work [20]. For instance, it was shown that both problems remain NP-complete on interval outerplanar graphs, k-regular graphs for $k \geq 3$, and on graphs of bounded pathwidth. In addition, block graphs were identified as a class for which the complexity of the two problems Rainbow Connectivity and Strong Rainbow Connectivity differ. Indeed, it was shown that for block graphs, Rainbow Connectivity is NP-complete, while Strong Rainbow Connectivity is in P.

In this paper, we introduce as a natural variant of Rainbow Vertex Connectivity the following problem.

Strong Rainbow Vertex Connectivity (Srvc)
Instance: A connected undirected graph $G=(V, E)$, and a vertex-coloring $\psi: V \rightarrow C$, where C is a set of colors Question: Is G strongly rainbow vertex connected under ψ ?

We present several new complexity results for both Rainbow Vertex Connectivity and Strong Rainbow Vertex Connectivity.

- In Section 3, we focus on negative results. In particular, we prove both problems remain NP-complete for bipartite planar graphs of maximum degree 3 (Section 3.2), interval graphs (Section 3.3), triangle-free cubic graphs (Section 3.4), and k-regular graphs for $k \geq 4$ (Section 3.5).

Download Persian Version:
https://daneshyari.com/article/4949732

Daneshyari.com

[^0]: Wh Work partially supported by the Emil Aaltonen Foundation (160138 N).
 E-mail address: juho.lauri@tut.fi.
 http://dx.doi.org/10.1016/j.dam.2016.11.023
 0166-218X/© 2016 Elsevier B.V. All rights reserved.

