# Two complexity results for the vertex coloring problem 

D.S. Malyshev ${ }^{\mathrm{a}, *}$, O.O. Lobanova ${ }^{\text {b }}$<br>${ }^{\text {a }}$ National Research University Higher School of Economics, 25/12 Bolshaya Pecherskaya Ulitsa, 603155, Nizhny Novgorod, Russia<br>${ }^{\mathrm{b}}$ Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Avenue, Nizhny Novgorod, 603950, Russia

## ARTICLE INFO

## Article history:

Received 30 October 2015
Received in revised form 3 August 2016
Accepted 16 October 2016
Available online xxxx

## Keywords:

Computational complexity
Coloring problem
Hereditary class
Polynomial-time algorithm


#### Abstract

We show that the chromatic number of $\left\{P_{5}, K_{p}-e\right\}$-free graphs can be computed in polynomial time for each fixed $p$. Additionally, we prove polynomial-time solvability of the weighted vertex coloring problem for $\left\{P_{5}, \overline{P_{3}+P_{2}}\right\}$-free graphs. © 2016 Elsevier B.V. All rights reserved.


## 1. Introduction

In this paper, we consider only simple graphs, i.e. finite undirected graphs without loops and multiple edges. A coloring of a graph $G$ is an arbitrary mapping $c: V(G) \longrightarrow \mathbb{N}$, such that $c(u) \neq c(v)$ for any two adjacent vertices $u$ and $v$ of $G$. Elements of the set $\bigcup_{v \in V(G)}\{c(v)\}$ are said to be colors. A coloring $c^{*}$ of a graph $G$ is a $k$-coloring if $c^{*}: V(G) \longrightarrow\{1, \ldots, k\}$. The chromatic number of a graph $G$, denoted by $\chi(G)$, is the minimal number $k$, such that $G$ has a $k$-coloring. For a given graph $G$ and a number $k$, the coloring problem is to decide whether $\chi(G) \leq k$ or not. A similar $k$-colorability problem is to check whether vertices of a given graph can be colored with at most $k$ colors. Both problems can be naturally defined in another way via partition into independent sets. An independent set of a graph is an arbitrary set of its pairwise non-adjacent vertices. A graph coloring is a partition of vertex set of a given graph into independent sets, called color classes.

For a given graph $G$ and a function $w: V(G) \longrightarrow \mathbb{N}$, a pair $(G, w)$ is called a weighted graph. For a weighted graph $(G, w)$, the weighted coloring problem is to find the smallest number $k$, denoted by $\chi_{w}(G)$, such that there is a function $c: V(G) \longrightarrow 2^{\{1,2, \ldots, k\}}$, where $|c(v)|=w(v)$ for any $v \in V(G)$ and $c\left(v_{1}\right) \cap c\left(v_{2}\right)=\emptyset$ for any edge $\left(v_{1}, v_{2}\right)$ of $G$. The number $\chi_{w}(G)$ is called the weighted chromatic number of $(G, w)$. For any graph $G, \chi_{w^{\prime}}(G)=\chi(G)$, where $w^{\prime}$ maps every vertex to 1. So, the weighted coloring problem generalizes the coloring problem.

A class of simple graphs is called hereditary if it is closed under deletion of vertices. It is well-known that any hereditary (and only hereditary) graph class $\mathcal{X}$ can be defined by a set of its forbidden induced subgraphs $s$. We write $\mathcal{X}=$ Free ( $\ell$ ), and the graphs in $\mathcal{X}$ are said to be $\delta$-free. If $\delta=\{G\}$, then we write " $G$-free" instead of " $\{G\}$-free".

There is a natural lower bound for the chromatic number of graphs. A clique in a graph is a subset of its pairwise adjacent vertices. The size of a maximum clique of a graph $G$, denoted by $\omega(G)$, is called the clique number of $G$. Clearly, $\chi(G) \geq \omega(G)$.

[^0]A graph is said to be perfect if the clique and the chromatic numbers are equal for its every induced subgraph, not necessarily proper. The class of perfect graphs coincides with $\operatorname{Free}\left(\left\{C_{5}, \overline{C_{5}}, C_{7}, \overline{C_{7}}, \ldots\right\}\right)$, by The Strong Perfect Graph Theorem [5], see notation for graphs in the next section. Sometimes, computing the clique number in polynomial time helps to determine the chromatic number also in polynomial time [15,36]. More precisely, for graphs in [15,36], including perfect graphs, determining the chromatic number can be polynomially reduced to computing the clique number and the clique number can be found in polynomial time.

The computational complexity of the coloring, the weighted coloring, and the $k$-colorability problems and their edge variants was intensively studied for families of the forms $\{$ Free $(f) \mid \&$ has a small number of graphs\} and $\{$ Free $(f) \mid$ every graph in $\delta$ is small\} [1-3,7,8,13,14,17-39,41,42]. The computational complexity of the coloring problem was completely determined for all the classes of the form $\operatorname{Free}(\{G\})$ [22]. Namely, if $\subseteq_{i}$ is the induced subgraph relation, then the problem is polynomial-time solvable for $\operatorname{Free}(\{G\})$ whenever $G \subseteq_{i} P_{4}$ or $G \subseteq_{i} P_{3}+K_{1}$; otherwise it is NP-complete. A study of forbidden pairs was also initiated in [22].

The following result shows some recent advances in classification of the complexity of the coloring problem for $\left\{G_{1}, G_{2}\right\}-$ free graphs [12]. Note that, by symmetry, the graphs $G_{1}$ and $G_{2}$ may be swapped in each of the subcases of the theorem.

Theorem 1. Let $G_{1}$ and $G_{2}$ be two fixed graphs. The coloring problem is NP-complete for Free $\left(\left\{G_{1}, G_{2}\right\}\right)$ if:

1. $C_{p} \subseteq_{i} G_{1}$ for $p \geq 3$, and $C_{q} \subseteq_{i} G_{2}$ for $q \geq 3$
2. $K_{1,3} \subseteq_{i} G_{1}$, and $K_{1,3} \subseteq_{i} G_{2}$ or $\overline{K_{2}+O_{2}} \subseteq_{i} G_{2}$ or $C_{r} \subseteq_{i} G_{2}$ for $r \geq 4$ or $K_{4} \subseteq_{i} G_{2}$
3. $G_{1}$ and $G_{2}$ contain a spanning subgraph of a $2 K_{2}$ as an induced subgraph
4. bull $\subseteq_{i} G_{1}$, and $K_{1,4} \subseteq_{i} G_{2}$ or $\overline{C_{4}+K_{1}} \subseteq_{i} G_{2}$
5. $C_{3} \subseteq_{i} G_{1}$, and $K_{1, p} \subseteq_{i} G_{2}$ for $p \geq 5$
6. $C_{3} \subseteq_{i} G_{1}$ and $P_{22} \subseteq_{i} G_{2}$
7. $C_{p} \subseteq_{i} G_{1}$ for $p \geq 5$, and $G_{2}$ contains a spanning subgraph of a $2 K_{2}$ as an induced subgraph
8. $C_{p}+K_{1} \subseteq_{i} G_{1}$ for $p \in\{3,4\}$ or $\bar{C}_{q} \subseteq_{i} G_{1}$ for $q \geq 6$, and $G_{2}$ contains a spanning subgraph of a $2 K_{2}$ as an induced subgraph
9. $K_{5} \subseteq_{i} G_{1}$ and $P_{7} \subseteq_{i} G_{2}$
10. $K_{6} \subseteq_{i} G_{1}$ and $P_{6} \subseteq_{i} G_{2}$.

It is polynomial-time solvable for $\operatorname{Free}\left(\left\{G_{1}, G_{2}\right\}\right)$ if:

1. $G_{1}$ is an induced subgraph of a $P_{4}$ or a $P_{3}+K_{1}$
2. $G_{1} \subseteq_{i} K_{1,3}$, and $G_{2} \subseteq_{i}$ hammer or $G_{2} \subseteq_{i}$ bull or $G_{2} \subseteq_{i} P_{5}$
3. $G_{1} \neq K_{1,5}$ is a forest on at most six vertices or $G_{1}=K_{1,3}+3 K_{1}$, and $G_{2} \subseteq_{i}$ paw
4. $G_{1} \subseteq_{i} s K_{2}$ or $G_{1} \subseteq_{i} P_{5}+O_{s}$ for $s>0$, and $G_{2}$ is a complete graph or $G_{2} \subseteq_{i}$ hammer
5. $G_{1} \subseteq_{i} P_{4}+K_{1}$ or $G_{1} \subseteq_{i} P_{5}$, and $G_{2} \subseteq_{i} \overline{P_{4}+K_{1}}$ or $G_{2} \subseteq_{i} \overline{P_{5}}$
6. $G_{1} \subseteq_{i} K_{2}+O_{2}$, and $G_{2} \subseteq_{i} \overline{2 K_{2}+K_{1}}$ or $G_{2} \subseteq_{i} \overline{P_{3}+O_{2}}$ or $G_{2} \subseteq_{i} \overline{P_{3}+K_{2}}$
7. $G_{1} \subseteq_{i} \overline{K_{2}+O_{2}}$, and $G_{2} \subseteq_{i} 2 K_{2}+K_{1}$ or $G_{2} \subseteq_{i} P_{3}+O_{2}$ or $G_{2} \subseteq_{i} P_{3}+P_{2}$
8. $G_{1} \subseteq_{i} K_{2}+O_{s}$ for $s>0$ or $G_{1}=P_{5}$, and $G_{2} \subseteq_{i} \overline{K_{2}+O_{t}}$ for $t>0$
9. $G_{1} \subseteq O_{4}$ and $G_{2} \subseteq \overline{P_{3}+O_{2}}$
10. $G_{1} \subseteq P_{5}$, and $G_{2} \subseteq_{i} C_{4}$ or $G_{2} \subseteq \overline{P_{3}+O_{2}}$.

A complete complexity dichotomy for the coloring problem is hard to obtain even in the following cases: (a) two forbidden induced subgraphs, each on at most four vertices [24]; (b) two connected forbidden induced subgraphs, each on at most five vertices [32]. For all but three cases either NP-completeness or polynomial-time solvability was shown in the family of all the hereditary classes, defined by four-vertex forbidden induced structures [24]. The remaining three classes $\operatorname{Free}\left(\left\{O_{4}, C_{4}\right\}\right)$, $\operatorname{Free}\left(\left\{K_{1,3}, O_{4}\right\}\right)$, $\operatorname{Free}\left(\left\{K_{1,3}, O_{4}, K_{2}+O_{2}\right\}\right)$ are stubborn. A similar result was obtained in [32] for two connected five-vertex forbidden induced fragments, where the number of open cases was 13. A list of the open cases is presented below (the numbers in parentheses show the quantities of such kind sets).

1. $\left\{K_{1,3}, G\right\}$, where $G \in\{$ bull, butterfly $\}$ (2)
2. $\{$ fork, bull $\}$ (1)
3. $\left\{P_{5}, G\right\}$, where $G$ is an arbitrary connected five-vertex complement graph of the line graph of a forest with 3 leaves in each connected component and $G \notin\left\{K_{5}\right.$, gem $\}$ (10).

Recently, the number of the open cases was reduced to 10 [18,36] by proving that the coloring problem can be solved in polynomial time for $\operatorname{Free}\left(\left\{P_{5}, \overline{P_{5}}\right\}\right)$, $\operatorname{Free}\left(\left\{K_{1,3}, \operatorname{bull}\right\}\right)$, $\operatorname{Free}\left(\left\{P_{5}, \overline{P_{3}+O_{2}}\right\}\right)$. In this paper, we reduce the number to eight by showing that the coloring problem can be solved for $\left\{P_{5}, \overline{P_{3}+P_{2}}\right\}$-free or $\left\{P_{5}, K_{p}-e\right\}$-free graphs in polynomial time. More generally, we prove polynomial-time solvability of the weighted coloring problem for $\left\{P_{5}, \overline{P_{3}+P_{2}}\right\}$-free graphs.

# https://daneshyari.com/en/article/4949734 

Download Persian Version:
https://daneshyari.com/article/4949734

## Daneshyari.com


[^0]:    . Some results of this paper was published at arXiv in D.S. Malyshev, O.O. Lobanova: The coloring problem for $\left\{P_{5}, \overline{P_{5}}\right\}$-free graphs and $\left\{P_{5}, K_{p}-e\right\}$-free graphs is polynomial, arXiv:1503.02550.

    * Corresponding author.

    E-mail addresses: dsmalyshev@rambler.ru (D.S. Malyshev), olga-olegov@yandex.ru (O.O. Lobanova).
    http://dx.doi.org/10.1016/j.dam.2016.10.025
    0166-218X/© 2016 Elsevier B.V. All rights reserved.

