[Discrete Applied Mathematics](http://dx.doi.org/10.1016/j.dam.2016.11.014) | (|

Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Nordhaus–Gaddum-type results for the Steiner Wiener index of graphs[☆]

Y[a](#page-0-1)ping Maoª, Zhao Wangª[,b](#page-0-2), Ivan Gutman ^{[c,](#page-0-3)[d,](#page-0-4)}*, He Liª

^a *Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, China*

b *School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China*

c *Faculty of Science, University of Kragujevac, P. O. Box 60, Kragujevac, Serbia*

d *State University of Novi Pazar, Novi Pazar, Serbia*

ARTICLE INFO

Article history: Received 7 May 2016 Received in revised form 8 November 2016 Accepted 11 November 2016 Available online xxxx

Keywords: Distance (in graph) Steiner distance Wiener index Steiner Wiener index Nordhaus–Gaddum relations

a b s t r a c t

 $\sum_{u,v \in V(G)} d(u,v)$ where $d(u,v)$ stands for the distance between the vertices *u* and *v* of The Wiener index *W* of a connected graph *G* with vertex set $V(G)$ is defined as $W =$ *G*. For $S \subseteq V(G)$, the Steiner distance $d(S)$ of the vertices of *S* is the minimum size of a connected subgraph of *G* whose vertex set contains *S*. The *k*th Steiner Wiener index *SWk*(*G*) of *G* is defined as the sum of Steiner distances of all *k*-element subsets of *V*(*G*). In 2005, Zhang and Wu studied the Nordhaus–Gaddum problem for the Wiener index. We now obtain analogous results for *SWk*, namely sharp upper and lower bounds for $SW_k(G) + SW_k(\overline{G})$ and $SW_k(G) \cdot SW_k(\overline{G})$, valid for any connected graph *G* whose complement *G* is also connected.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this paper are assumed to be undirected, finite and simple and connected. We refer to [\[4\]](#page--1-0) for graph theoretical notation and terminology not specified here. For a graph *G*, let $V(G)$, $E(G)$ and $e(G) = |E(G)|$ denote the set of vertices, the set of edges and the size of *G*, respectively.

If *S* is a vertex-subset of a graph *G*, the subgraph of *G* induced by *S* is denoted by *G*[*S*]. We denote by *EG*[*X*, *Y*] the set of edges of *G* with one end in *X* and the other in *Y*. If $X = \{x\}$, we simply write $E_G[x, Y]$ for $E_G[\{x\}, Y]$.

The *connectivity* of a graph *G*, written $\kappa(G)$, is the order of a minimum vertex-subset $S \subseteq V(G)$ such that $G - S$ is disconnected or has only one vertex. Thus, if *G* is connected, then $\kappa(G) \geq 1$; if *G* has cut vertices, then $\kappa(G) = 1$.

The introduction is divided into the three subsections, in order to state the motivations and results of this paper.

1.1. Distance and its generalization

Distance is one of the basic concepts of graph theory [\[5\]](#page--1-1). If *G* is a connected graph and $u, v \in V(G)$, then the *distance* $d(u, v)$ between *u* and *v* is the length of a shortest path connecting *u* and *v*.

 $\hat{\sigma}$ Supported by the National Science Foundation of China (Nos. 11551001,11161037,11461054) and the Science Found of Qinghai Province (No. 2014-ZJ-907).

[∗] Corresponding author at: Faculty of Science, University of Kragujevac, P. O. Box 60, Kragujevac, Serbia. Fax: +381 34335040.

E-mail addresses: maoyaping@ymail.com (Y. Mao), wangzhao380@yahoo.com (Z. Wang), gutman@kg.ac.rs (I. Gutman), lihe0520@yahoo.com (H. Li).

<http://dx.doi.org/10.1016/j.dam.2016.11.014>

⁰¹⁶⁶⁻²¹⁸X/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: Y. Mao, et al., Nordhaus-Gaddum-type results for the Steiner Wiener index of graphs, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam.2016.11.014

2 *Y. Mao et al. / Discrete Applied Mathematics () –*

The distance between two vertices *u* and v in a connected graph *G* also equals the minimum size of a connected subgraph of *G* containing both *u* and v. This observation suggests a generalization of the distance concept. The *Steiner distance* of a graph, introduced by Chartrand et al. in 1989 [\[7\]](#page--1-2), is a natural and consequent generalization of the classical graph distance. For a graph $G(V, E)$ and a set $S \subseteq V(G)$ of at least two vertices, an *S-Steiner tree* or *a Steiner tree connecting* S (or simply, an *S*-tree) is a subgraph $T(V', E')$ of *G* that is a tree with $S \subseteq V'$. Then the *Steiner distance d_G(S)* of the vertices of *S* (or simply the distance of *S*) is the minimum size of all connected subgraphs whose vertex sets contain *S*. Observe that $d_G(S) = \min\{e(T) \mid S \subseteq V(T)\}\$, where T is a subtree of G. Furthermore, if $S = \{u, v\}$, then $d_G(S)$ coincides with the classical distance between *u* and v.

Observation 1. Let G be a connected graph of order n and k be an integer, $2 \le k \le n$. If $S \subseteq V(G)$ and $|S| = k$, then $k - 1 \leq d_G(S) \leq n - 1$.

The *average Steiner distance* $\mu_k(G)$ of a graph G, introduced by Dankelmann et al. [\[8](#page--1-3)[,9\]](#page--1-4), is defined as the average of the Steiner distances of all *k*-subsets of *V*(*G*), i.e.,

$$
\mu_k(G) = \binom{n}{k}^{-1} \sum_{\substack{S \subseteq V(G) \\ |S| = k}} d_G(S). \tag{1}
$$

Let *n* and *k* be integers such that $2 \le k \le n$. The *Steiner k-eccentricity* $e_k(v)$ of a vertex v of *G* is defined by $e_k(v) = \max\{d(S) \mid S \subseteq V(G), |S| = k, v \in S\}$. The Steiner k-radius of G is srad_k(G) = $\min\{e_k(v) \mid v \in V(G)\}$, whereas the *Steiner* k-diameter of *G* is *sdiam*_k(*G*) = max{ $e_k(v)$ | $v \in V(G)$ }. Note that for any vertex v of any connected graph *G*, $e_2(v) = e(v)$, and in addition *srad*₂(*G*) = *rad*(*G*) and *sdiam*₂(*G*) = *diam*(*G*). For more details on Steiner distance we refer to [\[2,](#page--1-5)[6–9,](#page--1-6)[12](#page--1-7)[,18,](#page--1-8)[20\]](#page--1-9).

Mao [\[18\]](#page--1-8) obtained the following results. By ∆(*G*) we denote the maximum degree among all vertices of *G*.

Lemma 2 ([\[18\]](#page--1-8)). Let G be a connected graph with connected complement \overline{G} . If sdiam_{*k*}(G) > 2*k*, then sdiam_{*k*}(\overline{G}) < *k*.

Lemma 3 ([\[18\]](#page--1-8)). Let G be a connected graph of order n. Then sdiam₃(*G*) = 2 *if and only if* $0 < \Delta(\overline{G}) < 1$.

Lemma 4 ([\[18\]](#page--1-8)). Let n, *k* be integers such that $2 \leq k \leq n$, and let G be a connected graph of order n. If sdiam_{*k*}(G) = $k - 1$, *then* $0 \leq \Delta(\overline{G}) \leq k - 2$ *.*

Lemma 5 ($[18]$). Let G be a connected graph of order n with connected complement. Let k be an integer such that $3 \leq k \leq n$. *Let* $x = 0$ *if* $n > 2k - 2$ *and* $x = 1$ *if* $n < 2k - 2$ *. Then*

(1) $2k - 1 - x \leq \text{sdiam}_k(G) + \text{sdiam}_k(G) \leq \max\{n + k - 1, 4k - 2\}$; (2) $(k-1)(k-x)$ ≤ $sdiam_k(G) \cdot sdiam_k(G)$ ≤ $max\{k(n-1), (2k-1)^2\}$ *.*

Lemma 6 ([\[18\]](#page--1-8)). Let G be a graph. Then sdiam_{n−1}(G) = $n - 2$ if and only if G is 2-connected.

The following corollary is immediate from the above lemmas.

Corollary 7. Let G and \overline{G} be connected graphs. If sdiam₃(G) \geq 6, then sdiam₃(\overline{G}) = 3.

Proof. By [Lemma 2,](#page-1-0) $\text{stiam}_3(\overline{G}) \leq 3$. We claim that $\text{stiam}_3(\overline{G}) = 3$. Assume, to the contrary, that $\text{stiam}_3(\overline{G}) = 2$. By [Lemma 3,](#page-1-1) we would have $0 \leq \Delta(G) \leq 1$, implying that *G* is not connected. If so, then the requirement *sdiam*₃(*G*) \geq 6 cannot hold, i.e., it cannot be *sdiam*₃(\overline{G}) = 2. \Box

1.2. Wiener index and its generalization

The *Wiener index* is defined as the sum of ordinary distances of all pairs of vertices of the underlying graph, i.e., as

$$
W(G) = \sum_{u,v \in V(G)} d(u,v)
$$

and its mathematical theory is nowadays well elaborated. For details see the surveys [\[11,](#page--1-10)[22\]](#page--1-11), the recent papers [\[10,](#page--1-12)[21](#page--1-13)[,13,](#page--1-14)[15\]](#page--1-15) and the references cited therein.

Li et al. [\[17\]](#page--1-16) generalized the concept of Wiener index using Steiner distance, by defining the *Steiner k-Wiener index SW_k*(*G*) of the connected graph *G* as

$$
SW_k(G) = \sum_{\substack{S \subseteq V(G) \\ |S| = k}} d_G(S).
$$

However, with regard to this definition, one should bear in mind Eq. (1) , and the Refs. [\[8,](#page--1-3)[9\]](#page--1-4).

Please cite this article in press as: Y. Mao, et al., Nordhaus-Gaddum-type results for the Steiner Wiener index of graphs, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam.2016.11.014

Download English Version:

<https://daneshyari.com/en/article/4949735>

Download Persian Version:

<https://daneshyari.com/article/4949735>

[Daneshyari.com](https://daneshyari.com)