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a  b  s  t  r  a  c  t

In this  paper,  we  aim  at proposing  a switching  adaptive  control  scheme  using  a  Hopfield-based  dynamic
neural  network  (SACHNN)  for nonlinear  systems  with  external  disturbances.  In our proposed  scheme,
an auxiliary  direct  adaptive  controller  (DAC)  ensures  the system  stability  when  the indirect  adaptive
controller  (IAC)  is failed;  that  is, ĝ(x) approaches  to  zero,  where ĝ(x) is  the  denominator  of an  indirect
adaptive  control  law.  The  IAC’s  limitation  of ĝ(x) >  ε then  can  be  solved  by  simply  switching  the IAC  to the
DAC,  where  ε is a  positive  desired  value.  The  Hopfield  dynamic  neural  network  (HDNN)  is  used  to not  only
design DAC  but  also  approximate  the  unknown  plant  nonlinearities  in  IAC design.  The  designed  simple
structure  of HDNN  keeps  the  tracking  performance  well  and  also  makes  the practical  implementation
much  easier  because  of  the  use  of less  and  fixed  number  of  neurons.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Most of control design techniques are based on the understanding of the plant under consideration and its surrounding environment.
However, in real-world applications lots of the controlled plants are too complex for us to fully understand the system dynamics through
the basic physical processes. Therefore, an identification technique was proposed for control design methods to obtain a progressive
understanding of the controlled plant. Adaptive control is a famous identification-technique-based control design. It provides a systematic
approach for automatically adjusting controllers on-line, in order to achieve or to maintain a desired performance level of control system
when the parameters of the plant dynamic model are unknown and/or change in time. In general, the adaptive control techniques can
distinguish between an indirect method (one calls this method as an indirect adaptive control (IAC) in the field of control design) and a
direct method (one calls this method as a direct adaptive control (DAC) in the field of control design) [1–7].

The basic idea of IAC is that a controller ensures the system stability with the estimation of the plant parameters from the available
input–output measurements. This scheme is termed as indirect because the adaptation of the controller parameters can be done in two
stages. First, the plant model parameters are estimated on-line and the controller is then calculated depending on the current estimated
plant model. IAC also has been referred to as explicit adaptive control because the design of controller is based on an explicit estimation
plant model. Therefore, the resulting parameter estimates are normally accurate enough for the purposes of monitoring and prognosing the
machine health, which are of significant practical importance for industrial applications. In contrast, the plant model of DAC is parameterized
in terms of the controller parameters, which are estimated directly without intermediate calculations. The adaptive control laws and the
parameter adaptation laws of DAC are simultaneously synthesized for the sole objective of reducing the output tracking error. However, this
synthesized design causes the drawbacks that the adaptive control laws and the parameter estimation must be concerned simultaneously
in the design process, and certain tracking error must be chosen as driving signals due to limitation of gradient type in the parameter
estimation law. Unfortunately, in real-world implementations the actual tracking errors are normally very small such that the direct
adaptive control law is thus prone to be corrupted by other factors, such as the sampling delay and noise. Therefore, the parameter
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estimates in DAC are normally not accurate enough for the purposes of the prognostics and the machine component health monitoring
[3,8,9].

IAC has been used for real-world implementations to provide system stability and to achieve superior performance of the output
tracking in many researches [2–4,10]. However, one condition g(x) > 0 (or g(x) < 0) must be held in these researches, where g(x) is an
unknown nonlinear continuous function of affine systems. That is, if the nonlinear function g(x) is close to zero, the control law is expected
to contain an unstable term 1/ĝ(x), where ĝ(x) is the approximation of g(x). In these cases, boundedness of control input cannot be ensured.
According to the assumption of g(x) > 0, a projection algorithm and a second control component were proposed in [1–5,10] to keep the
system stability. Furthermore, a direct control law for affine nonlinear systems was proposed in [6] instead of the indirect control law.
However, there still exist DAC inherent problems. Therefore, we  aim at proposing a switching adaptive control scheme, where the IAC
switches to the DAC as soon as ĝ(x) approaches to zero. It is clear that the unstable term 1/ĝ(x) can be simply avoided in our proposed
scheme. Note that the stability during whole control process, even at the moment of switching between IAC and DAC, can be guaranteed.

Neural networks (NNs) can be classified into two types, a static NN and a dynamic NN. In a static NN, signals flow from input units to
output units in a forward direction. In a dynamic NN, dynamic elements are involved in the structure of the NN, for example the elements
of feedback connections. The famous static NNs (SNNs), i.e. the feed-forward fuzzy neural network (FNN) and feed-forward radius basis
function network (RBFN), are frequently used as a powerful modeling tool [3,8,9,11,26]. Although they have achieved much theoretical
success, their complex structures make the practical implementation difficult and the number of the hidden neurons in the NNs’ hidden
layers is hard to determine. In addition, SNNs are quite sensitive to the unlearned changes, and they are also unable to represent the
dynamic system mapping without the aid of tapped delay. However, the tapped delay will result in long computation time, high sensitivity
to external noise, and a large number of neurons [12]. These drawbacks severely affect the applicability of SNNs. An important motivation
to promote DNNs is because a smaller DNN can provide the same functionality as a much larger SNN [13]. Furthermore, depending on
their dynamic memory, DNNs have good performances on the applications of identification, state estimation, trajectory tracking, and
robust against un-modeled dynamic. A Hopfield dynamic neural network (HDNN) is one of famous DNNs proposed by Hopfield J.J. in 1982
and 1984 [14,15]. HDNN can be easily realized by a Hopfield circuit and has the property of decreasing in energy by finite number of
node-updating steps. In HDNN, the analysis of fundamental properties, stability, convergence and equilibrium for discrete and continuous
systems were proposed in [16,17].

In this paper, the control object is to force the system output to track a given reference signal without the condition of ĝ(x) > ε for
nonlinear affine systems. In the proposed SACHNN the HDNNs are used to not only output the direct adaptive control force but also
approximate the unknown plant nonlinearities for the indirect adaptive controller. Furthermore, a compensation controller is merged to
SACHNN to dispel the effect of the approximation error and the bounded external disturbance. The saving weights of SACHNN are on-line
tuned by adaptive laws derived in the sense of Lyapunov Theorem.

2. Problem formulation

Let S ⊂ Rn and Q ⊂ Rn be open sets, Ds ⊂ S and DQ ⊂ Q be compact sets. Consider a nth-order nonlinear dynamic system of the form

x(n) = f (x) + g(x)u + d

y = x
(1)

where x = [x1 x2 . . .xn]T = [x ẋ . . .xn+1]
T

is the state vector. f : Ds → R and f : DQ → R are the uncertain continuous functions; u ∈ R is the
continuous control input and y ∈ R is the continuous output, which is assumed to be measurable; d ∈ R is bounded external disturbance.
The control objective is to force the system output y to follow a given bounded reference signal yr ∈ R. The error vector e is defined as

e = [e, ė, . . .,  e(n−1)]
T = [e1, e2, . . .,  en]T ∈ Rn, (2)

where e = yr − x1 = yr − y. If f(x) and g(x) are given and the system is free of external disturbance, the ideal controller can be designed as

uideal = 1
g(x)

[−f (x) + y(n)
r + kT

c e], (3)

where kc = [knkn−1. . .k1]T . Substituting (3) into (1), we have the following error dynamics

e(n) + k1e(n−1) + · · · + kne = 0. (4)

If ki, i = 1, 2, 3, . . .,  n are chosen so that all roots of the polynomial H(s) = sn + k1sn−1 + · · · + kn lie strictly in the open left half of the complex
plane, then lim

t→∞
e(t) = 0. This implies that the control law uideal can be used for any initial conditions. However, since f(x) and g(x) are

unknown or perturbed, the ideal feedback controller uideal in (3) cannot be implemented.

2.1. Design of the switching robust adaptive controller

The developed controller u can be expressed as the following form [18].

u = uh + uc, (5)

where uh = ˛uD + (1 − ˛)uI is the adaptive controller, in which  ̨ ∈ [0, 1] is a weighting factor. Note that even though the factor  ̨ is chosen
as 0 or 1 according to the switching condition, the proof of global stability of close-loop system is not restricted to this condition. In (5), uD

stands for DAC and uI stands for IAC; uC is a compensation controller supposed to compensate the effect of external disturbance and the
approximation error. More specifically, uI could be expressed as the indirect controller as

uI = 1
ĝ(x)

(−f̂ (x) + y(n)
r + kT

c e), (6)
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