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a b s t r a c t

Let k ≥ 1 be an integer, and let G be a graph. A k-rainbow dominating function (or a k-RDF )
of G is a function f from the vertex set V (G) to the family of all subsets of {1, 2, . . . , k}
such that for every v ∈ V (G) with f (v) = ∅, the condition


u∈NG(v) f (u) = {1, 2, . . . , k}

is fulfilled, where NG(v) is the open neighborhood of v. The weight of a k-RDF f of G is the
valueω(f ) =


v∈V (G) | f (v) |. The k-rainbow domination number ofG, denoted by γrk(G), is

theminimumweight of a k-RDF ofG. The 1-rainbow domination is the same as the classical
domination.

The k-rainbow reinforcement number of G, denoted by rrk(G), is the minimum number
of edges that must be added to G in order to decrease the k-rainbow domination number.
In this paper, we study the k-rainbow reinforcement number of graphs to compare γrk and
γrk′ for k ≠ k′, and present some sharp bounds concerning the invariant.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs are finite, simple, and undirected. Let G be a graph. We let V (G) and E(G) denote the vertex
set and the edge set of G, respectively. For a vertex v ∈ V (G), the open neighborhood of v, denoted by NG(v), is the set
{u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v, denoted by NG[v], is the set NG(v) ∪ {v}. For a set U ⊆ V (G) and a
vertex v ∈ U , the private neighborhood of v with respect to U , denoted by pnG[v,U], is the set {u ∈ V (G) : NG[u]∩U = {v}}.
The degree of v ∈ V (G), denoted by dG(v), is defined by dG(v) = |NG(v)|. We let ∆(G) denote the maximum degree of
G. The complement of G is denoted by G. We let Pn and Cn denote the path and the cycle of order n, respectively. We let
Km1,...,mt denote the complete t-partite graph with t partite sets having cardinalities m1, . . . ,mt . Consult [6,12] for notation
and terminology which are not defined here.

The classical domination concept in a graph represents situations in which every location that is occupied by no guard
requires the presence of one guard in a neighboring location. Here we assume a more complex situation that, for example,
there are different types of guards and it is required that each location which is occupied by no guard has all types of guards
in its neighborhood. Brešar, Henning and Rall [2] introduced the rainbow domination concept to consider such situation. Let
k ≥ 1 be an integer, and set [k] := {1, 2, . . . , k}. A function f : V (G) → 2[k] is a k-rainbow dominating function (or a k-RDF )
of G if for every v ∈ V (G) with f (v) = ∅, the condition


u∈NG(v) f (u) = [k] is fulfilled. The weight of a k-RDF f of G is the
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value ω(f ) :=


v∈V (G) |f (v)|. The k-rainbow domination number of G, denoted by γrk(G), is the minimumweight of a k-RDF
of G. A k-RDF f of G is a γrk-function if ω(f ) = γrk(G). Note that γr1(G) is equal to the classical domination number, denoted
by γ (G).

Brešar and Šumenjak [3] proved that the 2-rainbow domination problem is NP-complete, and Chang, Wu and Zhu [4]
proved that the k-rainbow domination problem is also NP-complete for every k. Thus it is important to find good bounds on
the k-rainbow domination number. For example, the following sharp upper bounds have been known.

• For every connected graph G of order n ≥ 2, γr1(G) = γ (G) ≤
n
2 [10].

• For every connected graph G of order n ≥ 3, γr2(G) ≤
3n
4 [13].

• For every connected graph G of order n ≥ 5, γr3(G) ≤
8n
9 [5].

However, when we consider γrk with k ≥ 4, the situation is changed drastically. For a graph G, the function assigning {1} to
each vertex of G is a k-RDF of Gwith ω(f ) = |V (G)|. Thus

γrk(G) ≤ n for every (connected) graph G of order n. (1.1)

Since γrk(Pn) = n for k ≥ 4 and n ≥ 1 (see [5]), the bound in (1.1) is best possible. In particular, in such type of upper bounds
of the rainbow domination, we cannot distinguish γrk and γrk′ for 4 ≤ k < k′. Furthermore, for two integers k and k′ with
2 ≤ k < k′ < 2k, we have γrk(Kk′,m) = γrk′(Kk′,m) (m ≥ k′). In actuality, there are many graphs G which outwardly have no
difference between γrk(G) and γrk′(G) for k ≠ k′. When we are faced with such a problem, one might be interested in some
potential properties concerning the rainbow domination of G to distinguish the k-rainbow domination and the k′-rainbow
domination. In this paper, our main aim is to formulate such a potential property of the rainbow domination.

Here we focus on the reinforcement concept for the domination. The reinforcement number of a graph G with γ (G) ≥ 2,
denoted by r(G), is the minimum number of edges that must be added to G in order to decrease the domination number.
The reinforcement number r(G) of a graph G is defined to be 0 if γ (G) = 1. The reinforcement number was introduced by
Kok and Mynhardt [9] and has been studied in, for example, [1,7,8].

We extend the reinforcement number to the rainbowdomination. Let k ≥ 1 be an integer. For a graphG, a subset F of E(G)
is a k-rainbow reinforcement set (or a k-RRS) of G if γrk(G+ F) < γrk(G). Note that G has a k-RRS if and only if γrk(G) ≥ k+ 1.
The k-rainbow reinforcement number of a graph G with γrk(G) ≥ k + 1, denoted by rrk(G), is the minimum size of a k-RRS
of G. The k-rainbow reinforcement number rrk(G) of a graph G is defined to be 0 if γrk(G) ≤ k. A k-RRS F of G is an rrk-set if
|F | = rrk(G). Note that rr1(G) is equal to the original reinforcement number r(G).

Let G be a graph with γrk(G) = γrk′(G) for k ≠ k′. Recall that our aim is to formulate a potential property concerning the
rainbow domination of G. We will show that there is a magnitude relation between rrk(G) and rrk′(G) (see Theorem 3.1 in
Section 3), and hence k-rainbow reinforcement number is an index that we desire.

Our purpose in this paper is to initiate the study of k-rainbow reinforcement number in graphs. In Section 2, we study
the k-rainbow reinforcement number under some special conditions. Recall that our first motivation is to distinguish the
k-rainbow domination and the k′-rainbow domination of a graph G with γrk(G) = γrk′(G). In Section 3, we consider such a
situation. In Section 4, we present an upper bound of rrk for general graphs. In general, for a given graph G, it is difficult to
determine rrk(G). In Section 5, we focus on the 2-rainbow reinforcement number, and determine exact value of rr2 for some
classes of graphs, and give a sharp upper bound of rr2 for trees.

1.1. Preliminaries

In this subsection, we give further definitions and present two useful lemmas.
Let G be a graph, and let f be a k-RDF of G. For I ⊆ [k], we let V f

I (G) = {v ∈ V (G) : f (v) = I} and U f
I (G) = {v ∈ V (G) :

f (v) ⊇ I}. When the considered graph G is clear, we omit the symbol ‘‘(G)’’; when the elements of a set I are specified, we
usually use a sequence of elements of I instead of I . Thus, for example, we use V f

1 , V
f
1,2 and U f

1,2 instead of V f
{1}(G), V f

{1,2}(G)

and U f
{1,2}(G), respectively. Furthermore, we use V f

0 (G) or V f
0 instead of V f

∅
(G).

The following fundamental lemmas will be used in our proof.

Lemma 1.1 ([2]). Let k ≥ 1 be an integer, and let G be a graph. Then γrk(G) ≤ γr(k+1)(G).

Lemma 1.2. Let k ≥ 1 be an integer, and let G be a graph with γrk(G) ≥ k+1. Let F be an rrk-set of G, and let g be a γrk-function
of G + F . Then the following hold:

(i) For each edge v1v2 ∈ F , there is an integer i ∈ {1, 2} such that g(vi) = ∅ and g(v3−i) ≠ ∅.
(ii) We have γrk(G + F) = γrk(G) − 1.

Proof. We first show (i). If there exists an edge v1v2 ∈ F such that either g(vi) ≠ ∅ for each i ∈ {1, 2} or g(v1) = g(v2) = ∅,
then g is also a k-RDF ofG+(F−{v1v2}), and hence F−{v1v2} is a k-RRS ofG, which contradicts the definition of F . Therefore
(i) holds.
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