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a b s t r a c t

We examine maximum vertex coloring of random geometric graphs, in an arbitrary but
fixed dimension, with a constant number of colors. Since this problem is neither scale-
invariant nor smooth, the usual methodology to obtain limit laws cannot be applied. We
therefore leverage different concepts based on subadditivity to establish convergence laws
for the maximum number of vertices that can be colored. For the constants that appear in
these results, we provide the exact value in dimension one, and upper and lower bounds
in higher dimensions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We examine maximum coloring of random geometric graphs (RGGs), in an arbitrary but fixed dimension d, with a
constant number of colors. The vertices of an RGG (whose spatial distribution will be defined below) are embedded in
an Euclidean space that is equipped with the ℓ2 distance or some ℓp distance in general, and two vertices are connected if
and only if they are within a given Euclidean distance r . More specifically, we address the questions: What is the maximum
number of vertices in a sparse RGG that can be properly colored with a constant number of colors? In particular, what is the
asymptotic behavior of that value, as the total number of vertices in the graph tends to infinity?

It is important to emphasize the distinction between our problem and that of determining the chromatic number, which
is the minimum required number of colors to properly color all the vertices of a graph such that no two adjacent vertices
are assigned the same color. Determining whether an RGG (or a unit-disk graph) is k-colorable, i.e., whether its chromatic
number is at most k, is NP-hard even for k = 3, see [3]. Our problem is different from determining the chromatic number,
since we are interested in the maximum number of vertices that can be properly colored with given k ∈ N colors, as well
as from k-colorability, which is a binary decision problem. The chromatic number of RGGs has been studied in detail (for
different values of the expected degree), see Theorem 1.1 in [8]. The chromatic number in the thermodynamic regime, when
the expected degree is constant, is ‘almost’ logarithmic in the number of vertices n, i.e., (1 + o(1)) log n/ log log n, which
additionally inspires our problem where only a constant number of colors is available.

The above-mentioned questions are not only of fundamental interest, but also motivated by applications in wireless
networks, where the various users need to be assigned channels (transmission frequencies) in order to be able to
communicate, subject to certain interference constraints. For example, in order to avoid excessive interference, the same
channel cannot be assigned to two users within a certain reuse distance r . The total number of required channels to cover all

∗ Corresponding author.
E-mail addresses: sem@research.bell-labs.com (S. Borst), milan@research.bell-labs.com (M. Bradonjić).

http://dx.doi.org/10.1016/j.dam.2016.10.009
0166-218X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2016.10.009
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2016.10.009&domain=pdf
mailto:sem@research.bell-labs.com
mailto:milan@research.bell-labs.com
http://dx.doi.org/10.1016/j.dam.2016.10.009


428 S. Borst, M. Bradonjić / Discrete Applied Mathematics 217 (2017) 427–437

users then corresponds to the chromatic number of the associated interference graph where two users are neighbors when
they are locatedwithin distance r . When the user locations are governed by a spatial Poisson process, the interference graph
is an RGG, and the chromatic number will grow without bound as the total number of users grows large. As a result, the
required number of channels to cover all users will grow without bound, implying that the capacity per channel, and hence
the so-called max–min throughput of the network, will vanish in the limit, which is obviously undesirable. The question
thus arises how many users can be covered when the number of available channels is finite. It will then not be feasible to
cover all users as the total number of users grows large, but the users that do get covered are ensured to receive a strictly
positive throughput. The results that we prove in the present paper imply that any target for the fraction of users to be
covered, arbitrarily close to one, can be achieved in the limit with a sufficiently large but constant number of channels.

Besides wireless networks, RGGs have also found applications in various further areas, e.g. cluster analysis, statistical
physics, modeling data in high-dimensional spaces, and hypothesis testing, to mention just a few [10]. For problems on
many of these ‘real’ networks, the sparse regime with constant expected vertex degree is particularly relevant, see [7].

We now formally state themain problem and results. For any subset of points V ⊆ Rd and r ∈ R+, let Gr(V ) be the graph
with vertex set V and edge set E = {{u, v} ∈ V 2

: ∥u − v∥ ≤ r}, i.e., connecting all pairs of points that are within a given
Euclidean distance r .

The main object of interest is the cardinality of a set obtained by a maximum proper coloring with k colors of a given
graph Gr(V ). Note that such a set obtained by a maximum proper coloring on finite V may not be unique, but its cardinality
is unique and defined as follows. For any k ∈ N, let Nk,r(V ) be themaximum number of vertices that can be properly colored
in Gr(V ) with k colors. For any λ > 0, let Xλ be a Poisson point process of intensity λ in Rd. For compactness, denote

Fk,λ(t) = Nk,1([0, t]d ∩ Xλ)

for any t ≥ 0.
Also, let In be a collection of n points uniformly and independently distributed in the unit cube [0, 1]d. For compactness,

denote

Hk,r(n) = Nk,r(In)

for any n ∈ N and r > 0.
The main problem:We are interested in the asymptotic behavior of the expectation and moreover the distribution of Fk,λ(t)
as t → ∞, as well as Hk,ν(n) as n → ∞.
The main results:We show that for any d, k ∈ N and λ > 0, the functional Fk,λ(t) converges in probability

Fk,λ(t)
λtd

p
→ ak,λ,

for some ak,λ ∈ (0, 1], and in distribution, for any ν > 0,

Hk, d√ν/n(n)

n
d

→ ak,ν .

One of our mainmethods involves the notion of subadditivity. Concretely, we divide the cube [0, t]d into cubes of volume
sd, for some s < t which we specify later, and apply the subadditivity argument in order to relate Fk,λ(t) and Fk,λ(s). We
show that the lower and upper limits as t → ∞ of Fk,λ(t) exist and are the same, and moreover we establish the weak law
of large numbers for Fk,λ(t) and the strong law of large numbers for Hk,ν(n).

In Lemma 4, we prove that the variance Var

Fk,λ(t)


= Ω(td), i.e., the limiting variance normalized by td is bounded

away from 0, and in Lemma 6 we present an upper bound on Var

Fk,λ(t)


= O(td), which together imply Var


Fk,λ(t)


=

Θ(td), see Lemma 7.
There are two branches of methods prevalent in discrete stochastic geometry, subadditive and stabilization methods,

usually used to obtain the limiting behavior of some Euclidean functionals: laws of large numbers, central limit theorems,
etc. For an excellent survey, the reader is referred to Yukich [14].

At first glance, the results in this paper can be seen as a subproblem and amenable to analysis by using techniques
from [2], and even the ‘‘more general subadditive methods’’ developed by Steele in Chapter 3 of [13]. In order to apply
these techniques from [13], a function L that maps a finite subset of points from Rd to R+ must satisfy the following four
hypotheses: (i) normalization L(∅) = 0; (ii) homogeneity L (αx1, αx2, . . . , αxn) = αL (x1, x2, . . . , xn) for every α > 0; (iii)
translation invariance ∀y ∈ Rd L (x1 + y, x2 + y, . . . , xn + y) = L (x1, x2, . . . , xn); (iv) geometric subadditivity, where for
allm, n ≥ 1 and x1, x2, . . . , xn ∈ [0, 1]d we have

L (x1, x2, . . . , xn) ≤

md
i=1

L ({x1, x2, . . . , xn} ∩ Qi) + O(md−1), (1)

where the unit cube [0, 1]d is partitioned into md cubes Qi with side 1/m.
Additionally, (v) L is monotone, if for all n and xi, L (x1, . . . , xn) ≤ L (x1, . . . , xn, xn+1). For example, Steele proves a so-

called ‘‘basic theorem’’, see Theorem 3.1.1 in [13], for general subadditive Euclidean functionals that are monotone and
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