# The complexity of partitioning into disjoint cliques and a triangle-free graph 

Marin Bougeret, Pascal Ochem*<br>CNRS-LIRMM, Montpellier, France

## A R T I C L E IN F O

## Article history:

Received 8 December 2015
Received in revised form 5 October 2016
Accepted 6 October 2016
Available online xxxx
To Nina (Pascal's daughter, born on Nov 1 2015) and Ilyas (Marin's son, born on Nov 6 2015)


#### Abstract

Motivated by Chudnovsky's structure theorem of bull-free graphs, Abu-Khzam, Feghali, and Müller have recently proved that deciding if a graph has a vertex partition into disjoint cliques and a triangle-free graph is NP-complete for five graph classes. The problem is trivial for the intersection of these five classes. We prove that the problem is NP-complete for the intersection of two subsets of size four among the five classes. We also show NP-completeness for other small classes, such as graphs with maximum degree 4 and line graphs.


© 2016 Elsevier B.V. All rights reserved.

Keywords:
Graph coloring
NP-completeness

## 1. Introduction

In this paper we consider the problem of recognizing graphs having a vertex partition into disjoint cliques and a trianglefree graph. We say that a graph is partitionable if it has such a partition. The vertices in the $P_{3}$-free part are colored blue and the vertices in the $K_{3}$-free part are colored red. This problem is known to be NP-complete on general graphs [5]. The NP-completeness on bull-free graphs was motivated by an open question in [11] (after Thm 2.1) about the complexity of recognizing the class $\tau_{1}$ introduced by Chudnovsky [3] in her characterization of bull-free graphs. Abu-Khzam, Feghali, and Müller [1] have then investigated the complexity of deciding whether a bull-free graph is partitionable. They have shown the following.

Theorem 1 ([1]). Recognizing partitionable graphs is NP-complete even when restricted to the following classes:
(1) planar graphs,
(2) $K_{4}$-free graphs,
(3) bull-free graphs,
(4) $\left(C_{5}, \ldots, C_{t}\right)$-free graphs (for any fixed $t$ ),
(5) perfect graphs.

In Section 2, we prove Theorem 2 which improves Theorem 1 . The classes $h_{1}$ and $h_{2}$ of Theorem 2 show that the problem remains NP-complete for the intersection of two subsets of size four among the five classes of Theorem 1 (graphs in the intersection of the five classes are partitionable). The class $h_{1}$ also answers the open question [1] of the complexity

[^0]http://dx.doi.org/10.1016/j.dam.2016.10.004
0166-218X/© 2016 Elsevier B.V. All rights reserved.

paw


net

house

butterfly

gem

Fig. 1. Some small graphs and their name.
of recognizing partitionable Meyniel graphs, since every graph in $h_{1}$ is a parity graph and parity graphs correspond to gem-free Meyniel graphs. We also show NP-completeness for several other classes. The classes $h_{3}$ to $h_{9}$ are motivated by the introduction of other natural forbidden induced subgraphs (mainly $C_{4}, K_{4}^{-}$, and $K_{1,3}$ ) and/or restriction on the maximum degree. The interesting feature of every class is briefly discussed at the end of its dedicated subsection. We study the tightness of this result in Section 3 by considering all the intersections between every two graph classes of Theorem 2.

We use standard notations for graphs (see [12]), some of them are reminded in Fig. 1. For interpretation of the references to color in the other figures, the reader is referred to the web version of this article.

A $k$-vertex is a vertex of degree $k$. Given a graph $G$, we denote its line graph by $L(G)$. Given a graph class $\mathcal{C}$, we denote by $L(\mathcal{C})$ the set of line graphs of graphs in $\mathcal{C}$.

## 2. Main result

In this section we prove the following result.

## Theorem 2. Recognizing partitionable graphs is NP-complete even when restricted to the following classes:

$h_{1}$ : planar ( $C_{4}, \ldots, C_{t}$, bull, gem, odd hole)-free graphs with maximum degree 8 ,
$h_{2}$ : planar ( $K_{4}$, bull, house, $C_{5}, \ldots, C_{t}$ )-free graphs,
$h_{3}$ : planar ( $K_{4}, C_{4}$, gem, $C_{7}, \ldots, C_{t}$, odd hole of length $\geqslant 7$ )-free graphs with maximum degree 7 ,
$h_{4}$ : ( $K_{4}, C_{5}, \ldots, C_{t}$, net, odd hole)-free graphs with maximum degree 8,
$h_{5}:\left(K_{4}^{-}\right.$, butterfly, $\left.C_{6}, \ldots, C_{t}\right)$-free graphs with maximum degree 4 ,
$h_{6}:\left(K_{4}, K_{4}^{-}, C_{4}, \ldots, C_{t}\right.$, butterfly)-free graphs,
$h_{7}$ : planar ( $K_{1,3}, K_{4}^{-}, C_{4}, \ldots, C_{t}$, odd hole)-free graphs with maximum degree 6 ,
$h_{8}$ : planar ( $K_{1,3}, K_{4}^{-}, C_{9}, \ldots, C_{t}$, odd hole)-free graphs with maximum degree 5 ,
$h_{9}:\left(K_{1,3}, K_{4}^{-}, C_{4}, \ldots, C_{t}, K_{5}\right.$, odd hole)-free graphs with maximum degree 5.
Kratochvíl proved that PLANAR (3, 54 )-sat is NP-complete [6]. In this restricted version of sAT, the graph of variable-clause incidences of the input formula must be planar, every clause is a disjunction of exactly three literals, and every variable occurs in at most four clauses. For every class considered in Theorem 2, we provide a reduction from Planar (3, 54$)$-sat. Given an instance formula $I$ of PLANAR $(3, \leqslant 4)$-sAT, we construct a graph $G$ such that $G$ is partitionable if and only if $I$ is satisfiable.

For the classes $h_{1}, h_{2}, h_{3}$, and $h_{4}$, the boolean value true is associated to the color red, the boolean value false is associated to the color blue, and the clause gadget is $P_{3}$. This way, an unsatisfied clause corresponds to a blue $P_{3}$. For the classes $h_{5}$ and $h_{6}$, the boolean value true is associated to the color blue, the boolean value false is associated to the color red, and the clause gadget is $K_{3}$. This way, an unsatisfied clause corresponds to a red $K_{3}$. For brevity, we say that a vertex with the color associated to the boolean value true (resp. false) is colored true (resp. false).

Given a variable $x$, a variable gadget is a graph $G_{x}$ with two disjoint subsets of vertices $S_{x}$ and $S_{\bar{x}}$ such that:

- There exists an involutive automorphism of $G_{x}$ which swaps $S_{x}$ and $S_{\bar{x}}$.
- There exists a partition of $G_{x}$ such that every vertex in $S_{x}$ is colored true and no blue vertex in $S_{x} \cup S_{\bar{x}}$ is adjacent to a blue vertex.
- No partition of $G_{x}$ is such that both a vertex in $S_{x}$ and a vertex in $S_{\bar{x}}$ are colored true.

The variable gadget depends on the considered graph class and is built on forcers. A forcer is a partitionable graph with a specified vertex $q$.

- A red forcer is such that $q$ is red in every partition.
- A blue forcer is such that $q$ is blue in every partition and there exists a partition such that every neighbor of $q$ is red.

We construct $G$ from $I$ as follows. We take one copy of the variable gadget per variable. We take one copy of the clause gadget (either $P_{3}$ or $K_{3}$ ) per clause. Each of the 3 vertices of the clause gadget corresponds to a literal of the clause. The vertices in $S_{x} \cup S_{\bar{x}}$ are depicted in green in the representation of the variable gadgets (Figs. 4 and 8). A subset of these green vertices corresponds to the literals of the variable $x$. For every literal $\ell_{x}$ of $I$, one vertex corresponding to $\ell_{x}$ in $G_{x}$ is identified with the vertex corresponding to $\ell_{x}$ in the clause gadget.

# https://daneshyari.com/en/article/4949752 

Download Persian Version:
https://daneshyari.com/article/4949752

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail address: ochem@lirmm.fr (P. Ochem).

