ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The complexity of partitioning into disjoint cliques and a triangle-free graph

Marin Bougeret, Pascal Ochem*

CNRS-LIRMM, Montpellier, France

ARTICLE INFO

Article history: Received 8 December 2015 Received in revised form 5 October 2016 Accepted 6 October 2016 Available online xxxx

To Nina (Pascal's daughter, born on Nov 1 2015) and Ilyas (Marin's son, born on Nov 6 2015)

Keywords: Graph coloring NP-completeness

1. Introduction

ABSTRACT

Motivated by Chudnovsky's structure theorem of bull-free graphs, Abu-Khzam, Feghali, and Müller have recently proved that deciding if a graph has a vertex partition into disjoint cliques and a triangle-free graph is NP-complete for five graph classes. The problem is trivial for the intersection of these five classes. We prove that the problem is NP-complete for the intersection of two subsets of size four among the five classes. We also show NP-completeness for other small classes, such as graphs with maximum degree 4 and line graphs.

© 2016 Elsevier B.V. All rights reserved.

In this paper we consider the problem of recognizing graphs having a vertex partition into disjoint cliques and a trianglefree graph. We say that a graph is *partitionable* if it has such a partition. The vertices in the P_3 -free part are colored blue and the vertices in the K_3 -free part are colored red. This problem is known to be NP-complete on general graphs [5]. The NP-completeness on bull-free graphs was motivated by an open question in [11] (after Thm 2.1) about the complexity of recognizing the class τ_1 introduced by Chudnovsky [3] in her characterization of bull-free graphs. Abu-Khzam, Feghali, and Müller [1] have then investigated the complexity of deciding whether a bull-free graph is partitionable. They have shown the following.

Theorem 1 ([1]). Recognizing partitionable graphs is NP-complete even when restricted to the following classes:

- (1) planar graphs,
- (2) K_4 -free graphs,
- (3) bull-free graphs,
- (4) (C_5, \ldots, C_t) -free graphs (for any fixed t),
- (5) perfect graphs.

In Section 2, we prove Theorem 2 which improves Theorem 1. The classes h_1 and h_2 of Theorem 2 show that the problem remains NP-complete for the intersection of two subsets of size four among the five classes of Theorem 1 (graphs in the intersection of the five classes are partitionable). The class h_1 also answers the open question [1] of the complexity

* Corresponding author. *E-mail address:* ochem@lirmm.fr (P. Ochem).

http://dx.doi.org/10.1016/j.dam.2016.10.004 0166-218X/© 2016 Elsevier B.V. All rights reserved.

<u>ARTICLE IN PRESS</u>

M. Bougeret, P. Ochem / Discrete Applied Mathematics (())

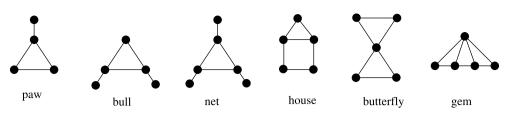


Fig. 1. Some small graphs and their name.

of recognizing partitionable Meyniel graphs, since every graph in h_1 is a parity graph and parity graphs correspond to gem-free Meyniel graphs. We also show NP-completeness for several other classes. The classes h_3 to h_9 are motivated by the introduction of other natural forbidden induced subgraphs (mainly C_4 , K_4^- , and $K_{1,3}$) and/or restriction on the maximum degree. The interesting feature of every class is briefly discussed at the end of its dedicated subsection. We study the tightness of this result in Section 3 by considering all the intersections between every two graph classes of Theorem 2.

We use standard notations for graphs (see [12]), some of them are reminded in Fig. 1. For interpretation of the references to color in the other figures, the reader is referred to the web version of this article.

A *k*-vertex is a vertex of degree *k*. Given a graph *G*, we denote its line graph by L(G). Given a graph class *C*, we denote by L(C) the set of line graphs of graphs in *C*.

2. Main result

In this section we prove the following result.

Theorem 2. Recognizing partitionable graphs is NP-complete even when restricted to the following classes:

- h_1 : planar (C_4 , ..., C_t , bull, gem, odd hole)-free graphs with maximum degree 8,
- h_2 : planar (K₄, bull, house, C_5, \ldots, C_t)-free graphs,
- *h*₃: planar (K_4 , C_4 , gem, C_7 , ..., C_t , odd hole of length ≥ 7)-free graphs with maximum degree 7,
- h_4 : (K_4 , C_5 , ..., C_t , net, odd hole)-free graphs with maximum degree 8,
- h_5 : $(K_4^-$, butterfly, $C_6, \ldots, C_t)$ -free graphs with maximum degree 4,
- h_6 : $(K_4, K_4^-, C_4, \ldots, C_t, butterfly)$ -free graphs,
- h_7 : planar ($K_{1,3}, K_4^-, C_4, \ldots, C_t$, odd hole)-free graphs with maximum degree 6,
- *h*₈: planar ($K_{1,3}, K_4^-, C_9, \ldots, C_t$, odd hole)-free graphs with maximum degree 5,
- h_9 : $(K_{1,3}, K_4^-, C_4, \ldots, C_t, K_5, odd hole)$ -free graphs with maximum degree 5.

Kratochvíl proved that PLANAR (3, \leq 4)-sAT is NP-complete [6]. In this restricted version of sAT, the graph of variable-clause incidences of the input formula must be planar, every clause is a disjunction of exactly three literals, and every variable occurs in at most four clauses. For every class considered in Theorem 2, we provide a reduction from PLANAR (3, \leq 4)-sAT. Given an instance formula *I* of PLANAR (3, \leq 4)-sAT, we construct a graph *G* such that *G* is partitionable if and only if *I* is satisfiable.

For the classes h_1 , h_2 , h_3 , and h_4 , the boolean value true is associated to the color red, the boolean value false is associated to the color blue, and the clause gadget is P_3 . This way, an unsatisfied clause corresponds to a blue P_3 . For the classes h_5 and h_6 , the boolean value true is associated to the color blue, the boolean value false is associated to the color red, and the clause gadget is K_3 . This way, an unsatisfied clause corresponds to a blue P_3 . For the classes h_5 and h_6 , the boolean value true is associated to the color blue, the boolean value false is associated to the color red, and the clause gadget is K_3 . This way, an unsatisfied clause corresponds to a red K_3 . For brevity, we say that a vertex with the color associated to the boolean value true (resp. false) is colored true (resp. false).

Given a variable *x*, a variable gadget is a graph G_x with two disjoint subsets of vertices S_x and $S_{\overline{x}}$ such that:

- There exists an involutive automorphism of G_x which swaps S_x and $S_{\overline{x}}$.
- There exists a partition of G_x such that every vertex in S_x is colored true and no blue vertex in $S_x \cup S_{\overline{x}}$ is adjacent to a blue vertex.
- No partition of G_x is such that both a vertex in S_x and a vertex in $S_{\overline{x}}$ are colored true.

The variable gadget depends on the considered graph class and is built on *forcers*. A forcer is a partitionable graph with a specified vertex *q*.

- A red forcer is such that *q* is red in every partition.
- A blue forcer is such that q is blue in every partition and there exists a partition such that every neighbor of q is red.

We construct *G* from *I* as follows. We take one copy of the variable gadget per variable. We take one copy of the clause gadget (either P_3 or K_3) per clause. Each of the 3 vertices of the clause gadget corresponds to a literal of the clause. The vertices in $S_x \cup S_{\overline{x}}$ are depicted in green in the representation of the variable gadgets (Figs. 4 and 8). A subset of these green vertices corresponds to the literals of the variable *x*. For every literal ℓ_x of *I*, one vertex corresponding to ℓ_x in G_x is identified with the vertex corresponding to ℓ_x in the clause gadget.

2

Download English Version:

https://daneshyari.com/en/article/4949752

Download Persian Version:

https://daneshyari.com/article/4949752

Daneshyari.com