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a b s t r a c t

Motivated byChudnovsky’s structure theoremof bull-free graphs, Abu-Khzam, Feghali, and
Müller have recently proved that deciding if a graph has a vertex partition into disjoint
cliques and a triangle-free graph is NP-complete for five graph classes. The problem is
trivial for the intersection of these five classes. We prove that the problem is NP-complete
for the intersection of two subsets of size four among the five classes. We also show
NP-completeness for other small classes, such as graphs with maximum degree 4 and line
graphs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the problem of recognizing graphs having a vertex partition into disjoint cliques and a triangle-
free graph. We say that a graph is partitionable if it has such a partition. The vertices in the P3-free part are colored blue
and the vertices in the K3-free part are colored red. This problem is known to be NP-complete on general graphs [5]. The
NP-completeness on bull-free graphs was motivated by an open question in [11] (after Thm 2.1) about the complexity of
recognizing the class τ1 introduced by Chudnovsky [3] in her characterization of bull-free graphs. Abu-Khzam, Feghali, and
Müller [1] have then investigated the complexity of deciding whether a bull-free graph is partitionable. They have shown
the following.

Theorem 1 ([1]). Recognizing partitionable graphs is NP-complete even when restricted to the following classes:

(1) planar graphs,
(2) K4-free graphs,
(3) bull-free graphs,
(4) (C5, . . . , Ct)-free graphs (for any fixed t),
(5) perfect graphs.

In Section 2, we prove Theorem 2which improves Theorem 1. The classes h1 and h2 of Theorem 2 show that the problem
remains NP-complete for the intersection of two subsets of size four among the five classes of Theorem 1 (graphs in
the intersection of the five classes are partitionable). The class h1 also answers the open question [1] of the complexity
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Fig. 1. Some small graphs and their name.

of recognizing partitionable Meyniel graphs, since every graph in h1 is a parity graph and parity graphs correspond to
gem-free Meyniel graphs. We also show NP-completeness for several other classes. The classes h3 to h9 are motivated by
the introduction of other natural forbidden induced subgraphs (mainly C4, K−

4 , and K1,3) and/or restriction on themaximum
degree. The interesting feature of every class is briefly discussed at the end of its dedicated subsection.We study the tightness
of this result in Section 3 by considering all the intersections between every two graph classes of Theorem 2.

We use standard notations for graphs (see [12]), some of them are reminded in Fig. 1. For interpretation of the references
to color in the other figures, the reader is referred to the web version of this article.

A k-vertex is a vertex of degree k. Given a graph G, we denote its line graph by L(G). Given a graph class C, we denote by
L(C) the set of line graphs of graphs in C.

2. Main result

In this section we prove the following result.

Theorem 2. Recognizing partitionable graphs is NP-complete even when restricted to the following classes:

h1: planar (C4, . . . , Ct , bull, gem, odd hole)-free graphs with maximum degree 8,
h2: planar (K4, bull, house, C5, . . . , Ct )-free graphs,
h3: planar (K4, C4, gem, C7, . . . , Ct , odd hole of length >7)-free graphs with maximum degree 7,
h4: (K4, C5, . . . , Ct , net, odd hole)-free graphs with maximum degree 8,
h5: (K−

4 , butterfly, C6, . . . , Ct )-free graphs with maximum degree 4,
h6: (K4, K−

4 , C4, . . . , Ct , butterfly)-free graphs,
h7: planar (K1,3, K−

4 , C4, . . . , Ct , odd hole)-free graphs with maximum degree 6,
h8: planar (K1,3, K−

4 , C9, . . . , Ct , odd hole)-free graphs with maximum degree 5,
h9: (K1,3, K−

4 , C4, . . . , Ct , K5, odd hole)-free graphs with maximum degree 5.

Kratochvíl proved that planar (3, 64)-sat is NP-complete [6]. In this restricted version of sat, the graph of variable-clause
incidences of the input formulamust beplanar, every clause is a disjunction of exactly three literals, and every variable occurs
in at most four clauses. For every class considered in Theorem 2, we provide a reduction from planar (3, 64)-sat. Given an
instance formula I of planar (3, 64)-sat, we construct a graph G such that G is partitionable if and only if I is satisfiable.

For the classes h1, h2, h3, and h4, the boolean value true is associated to the color red, the boolean value false is associated
to the color blue, and the clause gadget is P3. This way, an unsatisfied clause corresponds to a blue P3. For the classes h5
and h6, the boolean value true is associated to the color blue, the boolean value false is associated to the color red, and the
clause gadget is K3. This way, an unsatisfied clause corresponds to a red K3. For brevity, we say that a vertex with the color
associated to the boolean value true (resp. false) is colored true (resp. false).

Given a variable x, a variable gadget is a graph Gx with two disjoint subsets of vertices Sx and Sx such that:

• There exists an involutive automorphism of Gx which swaps Sx and Sx.
• There exists a partition of Gx such that every vertex in Sx is colored true and no blue vertex in Sx ∪ Sx is adjacent to a blue

vertex.
• No partition of Gx is such that both a vertex in Sx and a vertex in Sx are colored true.

The variable gadget depends on the considered graph class and is built on forcers. A forcer is a partitionable graph with a
specified vertex q.

• A red forcer is such that q is red in every partition.
• A blue forcer is such that q is blue in every partition and there exists a partition such that every neighbor of q is red.

We construct G from I as follows. We take one copy of the variable gadget per variable. We take one copy of the clause
gadget (either P3 or K3) per clause. Each of the 3 vertices of the clause gadget corresponds to a literal of the clause. The
vertices in Sx ∪ Sx are depicted in green in the representation of the variable gadgets (Figs. 4 and 8). A subset of these green
vertices corresponds to the literals of the variable x. For every literal ℓx of I , one vertex corresponding to ℓx in Gx is identified
with the vertex corresponding to ℓx in the clause gadget.
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