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a b s t r a c t

Inspired by the d-step approach used for investigating the diameter of polytopes, Deza and
Franek introduced the d-step conjecture for runs stating that the number of runs in a string
of length n with exactly d distinct symbols is at most n − d. Bannai et al. showed that
the number of runs in a string is at most n − 3 for n ≥ 5 by mapping each run to a set
of starting positions of Lyndon roots. We show that Bannai et al. method proves that the
d-step conjecture for runs holds, and stress the structural properties of run-maximal
strings. In particular, we show that, up to relabelling, there is a unique run-maximal string
of length 2dwith d distinct symbols. The number of runs in a string of length n is shown to
be at most n − 4 for n ≥ 9.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A run in a string x[1..n] is a succinct notion of a maximal repetition. A run is usually encoded by in a triple (s, e, p) such
that the substring x[s..e] has a minimal period of p, x[s..s+ p− 1] is primitive, s+ 2p− 1 ≤ e and so x[s..s+ p− 1] repeats
at least twice, and either s = 1 or x[s − 1] ≠ x[s + p − 2] and either e = n or x[e − p] ≠ x[e + 1], i.e. the periodicity can
be extended neither to the left nor to the right. Thus, s encodes the start of the run, e the end of the run, and p its period.
The substring x[s..s + p − 1] is the root of the run. For example, in the string aabababaa, the underlined run is encoded by
(2, 8, 2), and its root ab is repeated 4 times, with the last repeat being incomplete. Runs, equal up to translation, may occur
more than once in a string. For example, in the string aabababaaaaaabababaa, the underlined runs encoded by (2, 8, 2) and
(13, 19, 2) are both counted.

Crochemore [4] showed in 1981 that the order of the number of maximal repetitions in a string of length n is O(n log n).
In 1999, Kolpakov and Kucherov [18] showed that the order of the largest number ρ(n) of runs over all strings of length n is
O(n), without exhibiting an explicit constant, and conjectured that ρ(n) ≤ n. Rytter [23,24] determined such a constant in
2006, and the following years witnessed a tightening of the lower and upper bounds for the limit of ρ(n)/n, see [5,6,14–16,
19,21,20,22]. In 2015, the conjecture was proven by Bannai et al. [3] who showed that ρ(n) ≤ n − 1, and ρ(n) ≤ n − 3 for
n ≥ 5, by using starts of specific Lyndon roots of each run; that is by mapping all runs to mutually disjoint subsets of the
string indices.

Deza and Franek investigated the largest number ρd(n) of runs over all strings of length n with exactly d distinct
symbols. Similarities between ρd(n) and the largest diameter ∆(d, n) over all polytopes of dimension d having n facets
triggered the formulation of the d-step conjecture for strings stating that ρd(n) ≤ n − d, see [8]. The proposed d-step
approach proved that the following statements are equivalent {ρd(n) ≤ n − d for all d and n}, {ρd(2d) ≤ d for all d}, and
{ρd(2d) is achieved for all d by a, up to relabelling, unique string }. Considering binary strings, Fischer et al. [12] showed that
ρ2(n) ≤ ⌈22n/23⌉. While it is widely believed that ρd+1(n) ≤ ρd(n), and thus that ρ(n) = ρ2(n), no such results are known.
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Some properties concerning maximal strings are rather counterintuitive. For example, consider the largest number σd(n) of
distinct primitively rooted squares over all strings of length nwith exactly d distinct symbols. It was similarly believed that
the binary case is the key one; i.e. that σd+1(n) ≤ σd(n), and thus that σ(n) = σ2(n), till a counterexample was provided for
n = 33 with σ3(33) > σ2(33), see [9].

This paper aims at combining the Bannai et al. and d-step approaches in order to highlight the structural properties of
run-maximal strings. Besides strengthening by one the upper bound to ρ(n) ≤ n − 4 for n ≥ 9, these structural properties
may provide preliminary substantiation for the hypothesis that ρ(n) ≤ n−⌈log2 n⌉. For more details and additional results
concerning runs in strings we refer to [3] and references therein. Before presenting the main results in Section 2, we briefly
recall the Bannai et al. and d-step approaches in the remainder of this section.

1.1. Preliminaries

Strings are indexed starting with 1, i.e. a string x of length n can be written either as x[1..n] or x[1]x[2] . . . x[n]. The
alphabet of a string x is the set of all symbols occurring in x. A (d, n)-string refers to a string of length nwith exactly d distinct
symbols. A string x is a rotation of a string y if there are u and v such that x = uv and y = vu, and the rotation is trivialwhen
either u or v is the empty string. Let ≺ be a total order over the alphabet of a string x. The string x is Lyndon with respect to ≺

if x is lexicographically strictly smaller than any of its non-trivial rotations or, equivalently, if x is lexicographically strictly
smaller than any of its suffixes. The lexicographic order of strings is induced in the usualmanner by the order of the alphabet.
Note that ρ1(1) = 0 and ρ1(n) = 1 for n ≥ 2. Thus, we can assume that both d and n are at least 2 in the remainder of the
paper.

1.2. A d-step approach for polytopes and its continuous analogue

We briefly recall the d-step approach used to investigate the Hirsch bound for the diameter of polytopes, and its
continuous analogue, and provide some basic references.
A d-step approach for diameter-maximal polytopes

A polyhedron is the intersection of finitely many closed half-spaces, and a polytope is a bounded polyhedron. A
(d, n)-polytope is a polytope of dimension dwith n facets. The diameter δ(P) of a polytope P is the smallest integer such that
any pair of vertices of P can be connected by an edge-path of length at most δ(P). Let ∆(d, n) denote the largest diameter
over all (d, n)-polytopes. The Hirsch conjecture, posed in 1957, states that ∆(d, n) ≤ n − d. The values for ∆(d, n) are
usually listed in a (d, n − d) table where d is the index for the rows and n − d the index for the columns. The following
properties can be checked: ∆(d, n) ≤ ∆(d, n + 1), ∆(d, n) < ∆(d + 1, n + 2), ∆(d, n) ≤ ∆(d + 1, n + 1) for n ≥ d;
and ∆(d, n) = ∆(d + 1, n + 1) for 2d ≥ n ≥ d. In other words, the maximum of ∆(d, n) within a column is achieved on
the main diagonal and all values below a value on the main diagonal are equal to that value. The role played by the main
diagonal of the (d, n − d) table was underlined by Klee and Walkup [17] who showed the equivalency between the Hirsch
conjecture and the d-step conjecture stating that ∆(d, 2d) ≤ d for all d. The Hirsch conjecture was disproved by Santos [25]
by exhibiting a violation on the main diagonal with (d, n) = (43, 86); that is, Santos constructed a polytope in dimension
43 with 86 facets and a diameter of at least 44. Note that the d-cube is a (d, 2d)-polytope having diameter d and therefore
∆(d, 2d) ≥ d for all d. The string a1a1a2a2 . . . adad is a (d, 2d)-string with d runs and therefore ρ(d, 2d) ≥ d for all d. While
there is no obvious way to map the n facets of a (d, n)-polytope and the n characters of a (d, n)-string in general, one may
map the d squares aiai of the string a1a1a2a2 . . . adad and the d pairs of disjoint facets of the d-cube.
A d-step approach for curvature-maximal polytopes

Considering links between the currently most computationally successful algorithms for linear optimization; i.e., the
simplex and central-path following primal–dual interior point methods, Deza et al. [11] proposed a continuous analogue of
the Hirsch conjecture. The value of ∆(d, n) provides a lower bound for the number of iterations of simplex methods for the
worst case behaviour. The curvature of a polytope, defined as the largest total curvature of the associated central path, can
be regarded as the continuous analogue of its diameter. Considering the largest curvature Λ(d, n) over all (d, n)-polytopes,
Deza et al. [11] proved the following continuous analogue of the equivalence between the Hirsch conjecture and the d-step
conjecture: if Λ(d, 2d) = O(d) for all d, then Λ(d, n) = O(n). Using a tropical linear optimization setting, Allamigeon
et al. [1] constructed an exponential counterexample to the continuous analogue of the polynomial Hirsch conjecture by
exhibiting a (d, 3d/2)-polytope with a curvature of at least 2d/2.

1.3. A d-step approach for strings

A d-step formulation for strings was proposed in [8] where it was shown that ρd(n) and ∆(d, n) exhibit similarities and,
in particular, that ρd(n) ≤ ρd(n + 1), ρd(n) < ρd+1(n + 2), ρd(n) ≤ ρd+1(n + 1) for n ≥ d; and ρd(n) = ρd+1(n + 1)
for 2d ≥ n ≥ d. Consequently, the value of ρd(n) is presented in a (d, n − d) table where d is the index for the rows and
n − d the index for the columns, see Table 1 for a 20 × 20 portion of the (d, n − d) table for ρd(n). These properties noted
in [8] show that the maximum of ρd(n) within a column is achieved on the main diagonal and all values below a value on



Download English Version:

https://daneshyari.com/en/article/4949756

Download Persian Version:

https://daneshyari.com/article/4949756

Daneshyari.com

https://daneshyari.com/en/article/4949756
https://daneshyari.com/article/4949756
https://daneshyari.com

